Author: Tan, T.
Paper Title Page
TUP086 Cryogen-Free RF System Studies Using Cryocooler-Cooled Magnesium Diboride-Coated Copper RF Cavities 663
 
  • A. Nassiri, R. Kustom, Th. Proslier
    ANL, Argonne, USA
  • T. Tan, X. Xi
    TU, Philadelphia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.
Studies on the application of magnesium diboride(MgB2)high-Tc superconducting films have shown promise for use with rf cavities. Studies are directed towards applying the films to niobium cavities with the goal to increase accelerating gradients to greater than 50 MeV/m. However, studies also have shown that MgB2 films, with a critical temperature over four times higher than Nb, have surface resistances equal, or nearly equal, at 8-12 K, to what is achieved with niobium at 4 K. It might be possible to design and operate cavity systems in the 8-12K temperature range with cryocoolers that are currently available. The current cryocoolers can remove as much as 20 watts per unit in the range of 8-12K. This suggests that helium-free superconducting RF systems are possible for future light sources and possible industrial and medical linear accelerators. Our current research is directed towards depositing MgB2 films onto copper, or other high thermal conductivity metal, substrates which would allow future cavities to be fabricated as film coated copper structures. We have started atomic layer deposition and Hybrid chemical vapor deposition studies of MgB2 on 2-inch copper coupons.