Author: Sethna, J.P.
Paper Title Page
WEIOC04 Theoretical Field Limits for Multi-Layer Superconductors 794
 
  • S. Posen, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • G. Catelani
    Forschungszentrum Jülich, Peter Gruenberg Institut (PGI-2), Jülich, Germany
  • J.P. Sethna
    Cornell University, Ithaca, New York, USA
  • M.K. Transtrum
    M.D.A.C.C., Houston, Texas, USA
 
  With modern cavity preparation techniques, niobium SRF cavities reach surface magnetic fields very close to the fundamental limit of the superheating field of the material, and researchers are looking to alternative superconductors to sustain even higher fields. However, these materials may have an increased vulnerability to flux penetration at defects, even small ones, as a result of their short coherence lengths. A. Gurevich has proposed [1] a method of mitigating this vulnerability: coating a bulk superconducting cavity with a series of very thin insulating and superconducting films. In this work, we present a thorough mathematical description of the SIS thin films proposed by Gurevich in the language of the SRF community, to help researchers to optimize cavities made from alternative superconductors.
[1] A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006)
 
slides icon Slides WEIOC04 [4.116 MB]