Paper | Title | Page |
---|---|---|
THP084 | The Tuning System for the HIE-ISOLDE High-Beta Quarter Wave Resonator | 1121 |
|
||
Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI. A new linac using superconducting quarter-wave resonators (QWR) is under construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are made by Niobium sputtered on a bulk Copper substrate. The working frequency at 4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the beam axis with a total maximum power dissipation of 10 W on cavity walls. A tuning system is required in order to both minimize the forward power variation in beam operation and to compensate the unavoidable uncertainties in the frequency shift during the cool-down process. The tuning system has to fulfill a complex combination of RF, structural and thermal requirements. The paper presents the functional specifications and details the tuning system RF and mechanical design and simulations. The results of the tests performed on a prototype system are discussed and the industrialization strategy is presented in view of final production. |
||
FRIOB04 | CERN Developments for 704 MHz Superconducting Cavities | 1198 |
|
||
The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium β=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the status of the cavity manufacturing and surface preparation is detailed. | ||
![]() |
Slides FRIOB04 [8.677 MB] | |