Author: Reece, C.E.
Paper Title Page
MOIOC02 A New First-Principles Calculation of Field-Dependent RF Surface Impedance of BCS Superconductor 63
 
  • B. P. Xiao, C.E. Reece
    JLab, Newport News, Virginia, USA
  • B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored in part by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
There is a need to understand the intrinsic limit of RF surface impedance that determines the performance of superconducting RF cavities in particle accelerators. Here we present a field-dependent derivation of Mattis-Bardeen theory of the RF surface impedance of BCS superconductors, based on the shifted density of states resulting from coherently moving Cooper pairs. Our theoretical prediction of the effective BCS RF surface resistance of niobium as a function of peak surface magnetic field amplitude agrees well with recently reported record low loss resonant cavity measurements from JLab and Fermi Lab with carefully prepared niobium material. The surprising reduction in resistance with increasing field is explained to be an intrinsic effect.
 
slides icon Slides MOIOC02 [3.122 MB]  
 
MOP044 Performance Characteristics of Jefferson Lab’s New SRF Infrastructure 216
 
  • C.E. Reece, P. Denny, A.V. Reilly
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In the past two years, Jefferson Lab has reconfigured and renovated its SRF support infrastructure as part of the Technology and Engineering Development Facility project, TEDF. The most significant changes are in the cleanroom and chemistry facilities. We report the initial characterization data on the new ultra-pure water systems, cleanroom facilities, describe the reconfiguration of existing facilities and also opportunities for flexible growth presented by the new arrangement.
 
 
TUP010 Simulation of Non-linear RF Losses Derived from Characteristic Nb Topography 441
 
  • C. Xu, M.J. Kelley
    JLAB, Newport News, Virginia, USA
  • M.J. Kelley, C. Xu
    The College of William and Mary, Williamsburg, USA
  • C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A simplified model has been developed to simulate non-linear rf losses on Nb surfaces due exclusively to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal runaway leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP’d and EP’d fine grain niobium, we have simulated field-dependent losses and find that when extrapolated to resulting cavity performance correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We will describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution to SRF cavities.
 
 
TUP011 A Parametric Study of BCS RF Surface Impedance with Magnetic Field Using Xiao Code 444
 
  • C.E. Reece
    JLab, Newport News, Virginia, USA
  • B. P. Xiao
    JLAB, Newport News, Virginia, USA
  • B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A recent new analysis of field-dependent BCS RF surface impedance based on moving Cooper pairs has been presented.* Using this analysis coded in Mathematica™, survey calculations have been completed which examine the sensitivities of this surface impedance to variation of the BCS material parameters and temperature. The results present a refined description of the “best theoretical” performance available to potential applications with corresponding materials.
* Xiao B. P. et al, Physica C: Superconductivity, 490, 2013, pp. 26–31
 
 
TUP068 Laser Polishing of Niobium for SRF Applications 593
 
  • L. Zhao, M.J. Kelley
    The College of William and Mary, Williamsburg, USA
  • M.J. Kelley, J.M. Klopf, C.E. Reece
    JLAB, Newport News, Virginia, USA
  • L. Zhao
    JLab, Newport News, Virginia, USA
 
  Smooth interior surfaces are desired for niobium SRF cavities, now obtained by buffered chemical polish (BCP) and/or electropolish (EP). Laser polishing is a potential alternative, having advantages of speed, freedom from chemistry and in-process inspection. Here we show that laser polishing can produce smooth topography with Power Spectral Density (PSD) measurements similar to that obtained by EP. We studied the influence of the laser power density and laser beam raster rate on the surface topography. These two factors need to be combined carefully to smooth the surface without damaging it. Computational modeling was used to simulate the surface temperature and explain the mechanism of laser polishing.  
poster icon Poster TUP068 [1.011 MB]  
 
TUP070 Characterization of Superconducting Samples With SIC System for Thin Film Developments: Status and Recent Results. 599
 
  • G.V. Eremeev, H.L. Phillips, A-M. Valente-Feliciano
    JLAB, Newport News, Virginia, USA
  • C.E. Reece
    JLab, Newport News, Virginia, USA
  • B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by DOE. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated quicker measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB2, NbTiN, Nb3Sn films, etc. We present some of the recent results that illustrate present capabilities and limitations of the system.
 
 
TUP079 ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy 631
 
  • A-M. Valente-Feliciano, G.V. Eremeev, H.L. Phillips, C.E. Reece
    JLAB, Newport News, Virginia, USA
  • C. Cao
    Illinois Institute of Technology, Chicago, IL, USA
  • Th. Proslier
    ANL, Argonne, USA
  • J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • T. Tao
    UIC, Chicago, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favorable template for growing the final surface exposed to SRF fields. The influence of the deposition energy for both hetero-epitaxial and fiber growth modes on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance.
 
 
TUP082 Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities 638
 
  • X. Zhao, C.E. Reece
    JLab, Newport News, Virginia, USA
  • G. Ciovati
    Jefferson Lab, Newport News, Virginia, USA
  • I. Irfan, C. James, M. Krishnan
    AASC, San Leandro, California, USA
  • A.D. Palczewski
    JLAB, Newport News, Virginia, USA
 
  Funding: This research is supported at AASC by DOE via Grant No. DE-FG02-08ER85162 and Grant No. DE-SC0004994 and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DEAC05- 06OR23177
This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavity were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film at 2 K and low rf field, produced by CED, could be close to that of the pre-coated bulk Nb surface (being CBP'ed plus a light EP); but the quality drops rapidly for increasing rf field. We are investigating if the severe Q0-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.
 
 
TUP084 Reciprocal Space XRD Mapping with Varied Incident Angle as a Probe of Structure Variation within Surface Depth 651
 
  • X. Zhao
    JLab, Newport News, Virginia, USA
  • M. Krishnan
    AASC, San Leandro, California, USA
  • C.E. Reece
    JLAB, Newport News, Virginia, USA
  • F. Williams, Q.G. Yang
    NSU, Norfolk, USA
 
  Funding: This research is supported at AASC by DOE via Grant No. DE-FG02-08ER85162 and Grant No. DE-SC0004994 and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DEAC05- 06OR23177
In this study, we used a differential-depth X-Ray diffraction Reciprocal Spacing Mapping (XRD RSM) technique to investigate the crystal quality of a variety of SRF-relevant Nb film and bulk materials. By choosing different X-ray probing depths, the RSM study successfully revealed the materials’ microstructure evolutions after different materials processes, such as energetic condensation or surface polishing. The RSM data clearly measured the materials’ crystal quality at different thickness. Through a novel differential-depth RSM technique, this study found: I. for a heteroepitaxy Nb film Nb(100)/MgO(100), the film thickening process, via a cathodic arc-discharge Nb ion deposition, created a near-perfect single crystal Nb on the surface’s top-layer; II. for a mechanic polished single-crystal bulk Nb material, the microstructure on the top surface layer is more disordered than that in-grain.
 
 
TUP088 NbTiN Based SIS Multilayer Structures for SRF Applications 670
 
  • A-M. Valente-Feliciano, G.V. Eremeev, H.L. Phillips, C.E. Reece
    JLAB, Newport News, Virginia, USA
  • A.D. Batchelor
    NCSU AIF, Raleigh, North Carolina, USA
  • R.A. Lukaszew
    The College of William and Mary, Williamsburg, USA
  • J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • Q.G. Yang
    NSU, Norfolk, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor-Insulator-Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures via magnetron sputtering and High Power Impulse Magnetron Sputtering (HiPIMS). This paper presents the results on the characteristics of NbTiN and insulator films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.
 
 
TUP095 Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules 694
 
  • F. Marhauser, R.P. Johnson, R. Rodriguez
    Muons, Inc, Illinois, USA
  • P. Degtiarenko, A. Hutton, G. Kharashvili, C.E. Reece, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
 
  High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities.  
 
WEIOB02 Proof of Concept Thin Films and Multilayers Toward Enhanced Field Gradients in SRF Cavities 782
 
  • R.A. Lukaszew, D. Beringer, W.M. Roach
    The College of William and Mary, Williamsburg, USA
  • G.V. Eremeev, A-M. Valente-Feliciano
    JLAB, Newport News, Virginia, USA
  • C.E. Reece
    JLab, Newport News, Virginia, USA
  • X. Xi
    TU, Philadelphia, USA
 
  Funding: Defense Threat Reduction Agency (DTRA)
Due to the very shallow penetration depth of the RF fields, SRF properties are inherently a surface phenomenon involving a material thickness of less than 1 micron thus opening up the possibility of using thin film coatings to achieve a desired performance. The challenge has been to understand the dependence of the SRF properties on the detailed characteristics of real surfaces and then to employ appropriate techniques to tailor these surface properties for greatest benefit. Our aim is to achieve gradients >100 MV/m and no simple material is known to be capable of sustaining this performance. A theoretical framework has been proposed which could yield such behavior [1] and it requires creation of thin film layered structures. I will present our systematic studies on such proof-of-principle samples. Our overarching goal has been to build a basic understanding of key nano-scale film growth parameters for materials that show promise for SRF cavity multilayer coatings and to demonstrate the ability to elevate the barrier for vortex entry in such layered structures above the bulk value of Hc1 for type-II superconductors and thus to sustain higher accelerating fields.
[1]. A. Gurevich, Appl. Phys. Lett. 88, 012511 (2006).
 
slides icon Slides WEIOB02 [15.612 MB]  
 
THIOB01 CEBAF Upgrade: Cryomodule Performance and Lessons Learned 836
 
  • M.A. Drury, J. Hogan, C. Hovater, L.K. King, H. Park, J.P. Preble, R.A. Rimmer, H. Wang, M. Wiseman
    JLAB, Newport News, Virginia, USA
  • G.K. Davis, C.E. Reece
    JLab, Newport News, Virginia, USA
  • F. Marhauser
    Muons, Inc, Illinois, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract DE-AC05-06OR23177.
The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. The increase in beam energy will largely be due to the addition of ten C100 cryomodules and the associated RF in the CEBAF linacs. These cryomodules are designed to deliver 100 MeV per cryomodule. Each C100 cryomodule contains a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100 MV is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to be commissioned by September 2013. Commissioned performance has ranged from 104 MV to 118 MV. In May, 2012, a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs.
The U.S. Govt. retains a non-exclusive, paid-up,irrevocable,world-wide license to publish or reproduce this manuscript.
 
slides icon Slides THIOB01 [2.534 MB]