Paper | Title | Page |
---|---|---|
MOP057 | Developments and Tests of a 700 MHz Cryomodule for the Superconducting Linac of MYRRHA | 250 |
|
||
Funding: This work is being supported by the European Atomic Energy Community’s EURATOM) Seventh Framework Programme under grant agreement n°269565(MAX project). The MYRRHA (“Multi-purpose Hybrid Research reactor for High-tech Applications”) project aims at the construction of a new flexible fast spectrum research reactor. This reactor will operate as an Accelerator Driven System demonstrator. The criticality will be sustained by an external spallation neutron flux; produced thanks to a 600 MeV high intensity proton beam. This CW beam will be delivered by a superconducting linac which must fulfil very stringent reliability requirements. In this purpose, the accelerator design is based on a redundant and fault-tolerant scheme to enable the rapid mitigation of RF failures. To carry out “real scale” reliability-oriented experiments a prototype of cryomodule was developed by INFN Milano and installed at IPN Orsay. The module holds a 700 MHz 5-cell elliptical cavity (βg = 0.47) equipped with its blade frequency tuner. Several tests were carried out to commission the experimental set-up. We review here the obtained results and the lessons learnt by operating this module, as well as the on-going developments. |
||
MOP089 | Design of the ESS Spoke Cryomodule | 357 |
|
||
The European Spallation Source (ESS) project brings together 17 European countries to develop the world’s most powerful neutron source feeding multidisplinary researches. The superconducting part of the linear accelerator consists in 59 cryomodules housing different superconducting radiofrequency (SRF) resonators among which 28 paired β=0.5 352.2 MHz SRF niobium double Spoke cavities, held at 2K in a saturated helium bath. A prototype Spoke cryomodule with two cavities equipped with their 300kW RF power couplers is now being designed and will be constructed and tested at full power by the end of 2015 for the validation of all chosen technical solutions. It integrates all the interfaces necessary to be operational within a linac machine. Its assembly requires dedicated tooling and procedures in and out of a clean room. The design takes into account an industrial approach for the management of the fabrication costs. This prototype will have to guarantee an accelerating field of 8MV/m while optimizing the energy consumption and will aim at assessing the maintenance operations issues. We propose to present the design of this cryomodule and its related tooling. | ||
THP065 | Design of 352.21 MHz RF Power Input Coupler and Window for the European Spallation Source Project (ESS) | 1069 |
|
||
A 352.21 MHz RF high power coupler window was designed by IPNO to meet the specification requirements for the ESS accelerator project. This designed is based on IPNO’s power coupler developments performed in the framework of the EURISOL Design Study project for which two power couplers using coaxial technology without chokes systems around the ceramic disc have been designed and tested successfully up to 20 kW RF power level in CW mode. For ESS project, the RF power input window was developed and designed to reliability operate at an average power level of 25 kW up to 300 kW in pulsed and continuous wave modes. This 352.21 MHz RF window was developed to remove the chocks usually used and provided the following advantages: more reliability, less expensive to manufacture, better vacuum, easier cleaning, less secondary electron-multipacting with specificity to present a bandwidth close to 1 GHz. | ||