Author: Quigley, P.
Paper Title Page
MOP061 75 mA Operation of the Cornell ERL Superconducting RF Injector Cryomodule 259
 
  • M. Liepe, B.M. Dunham, R.G. Eichhorn, G.H. Hoffstaetter, R.P.K. Kaplan, P. Quigley, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the National Science Foundation (Grant No. DMR-0807731).
Cornell University has developed a SCRF injector cryomodule for the acceleration of high current, low emittance beams in continuous wave operation. This cryomodule is based on 1.3 GHz superconducting RF technology, and has been tested extensively in the Cornell ERL injector prototype with world record CW beam currents exceeding 70 mA. High CW RF power input couplers and strong Higher-Order-Mode damping in the cavities are essential for high beam current operation. This paper summarizes the performance of the cryomodule during the high beam current operation.
 
 
MOP071 Record Quality Factor Performance of the Prototype Cornell ERL Main Linac Cavity in the Horizontal Test Cryomodule 300
 
  • N.R.A. Valles, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Supported by NSF grant DMR-0807731
Future SRF linac driven accelerators operated in CW mode will require very efficient SRF cavities with high intrinsic quality factors Q at medium accelerating fields. Cornell has recently finished testing the fully equipped 1.3 GHz, 7-cell main linac cavity for the Cornell Energy Recovery Linac in a horizontal test cryomodule (HTC). Measurements characterizing the fundamental mode’s quality factor have been completed, showing record Q performance. In this paper, we present detailed quality factor vs gradient results for three HTC assembly stages. We show that the performance of an SRF cavity can be maintained when installed into a cryomodule, and that thermal cycling reduces residual surface resistance. We present world record results for a fully equipped multicell cavity in a cryomodule, reaching intrinsic quality factors at operating accelerating field of Q(E =16.2 MV/m, 1.8K) > 6·1010 and Q(E =16.2 MV/m, 1.6K) > 1.0·1011, corresponding to a very low residual surface resistance of 1.1 nOhm.
 
 
MOP074 Design and Construction of the Main Linac Cryomodule for the Energy Recovery Linac Project at Cornell 308
 
  • R.G. Eichhorn, B. Bullock, J.V. Conway, Y. He, T.I. O'Connel, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R&D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities and high beam currents (2*100 mA)are targeted. We will present the design of the main linac module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012  
 
MOP086 Integration, Commissioning and Cryogenics Performance of the ERL Cryomodule Installed on ALICE-ERL Facility at STFC Daresbury Laboratory, UK 349
 
  • S.M. Pattalwar, R.K. Buckley, P.A. Corlett, P. Goudket, A.R. Goulden, A.J. May, P.A. McIntosh, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S.A. Belomestnykh
    BNL, Upton, Long Island, New York, USA
  • A. Büchner, F.G. Gabriel, P. Michel
    HZDR, Dresden, Germany
  • E.P. Chojnacki, J.V. Conway, R.G. Eichhorn, G.H. Hoffstaetter, M. Liepe, H. Padamsee, P. Quigley, J. Sears, V.D. Shemelin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • M.A. Cordwell, T.J. Jones, L. Ma, A.J. Moss, J. Strachan
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • J.N. Corlett, D. Li, S.M. Lidia
    LBNL, Berkeley, California, USA
  • T. Kimura
    Stanford University, Stanford, California, USA
  • R.E. Laxdal
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  • J.K. Sekutowicz
    DESY, Hamburg, Germany
  • T.J. Smith
    SLAC, Menlo Park, California, USA
 
  On successful assembly and preliminary testing of an optimised SRF cryomodule for application on ERL accelerators, which is being developed through an international collaboration the cryomodule has been installed on the 35 MeV ALICE (Accelerators and Lasers in Combined Experiments) Energy Recovery Linac (ERL) facility at STFC Daresbury Laboratory. Existing cryogenic infrastructure has a capacity to deliver approximately 120 W cooling power at 2 K, but the HOM (Higher Order Mode) absorbers, the thermal intercepts for the high power RF couplers and the radiation shield in the cryomodule are designed to be cooled (to 5 K and 80 K) with gaseous helium instead of liquid nitrogen. As a result the cryogenic infrastructure for ALICE had to be modified to meet these additional requirements. In this paper we describe our experience with the process of integration and the cryogenic commissioning, and present some initial results.  
 
THIOB02 High Q Cavities for the Cornell ERL Main Linac 844
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, F. Furuta, A. Ganshin, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V.D. Shemelin, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  While SRF research for linear colliders was focused on achieving high gradients, Cornell’s proposal for an energy recovery linac (ERL) demanded for low cw losses. Starting several years ago, a high-Q R&D phase was launched that led to remarkable results recently: A fully dressed cavity (7 cells, 1.3 GHz) with side-mounted input coupler and beamline HOM absorbers achieved a Q of 3.5·1010 ((16 MV/m, 1.8 K). This talk will review the staged approach we have chosen in testing a single cavity in a horizontal short cryomodule (HTC), report results on each step and conclude on our findings about preserving high Q from vertical testing. We also discuss the production of six additional cavities as we progress toward constructing a full 6-cavity cryomodule as a prototype for Cornell’s main linac module  
slides icon Slides THIOB02 [8.378 MB]  
 
THP052 Cornell’s Beam Line Higher Order Mode Absorbers 1027
 
  • R.G. Eichhorn, J.V. Conway, Y. He, Y. Li, T.I. O'Connel, P. Quigley, J. Sears, N.R.A. Valles
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.D. Shemelin
    Cornell University, Ithaca, New York, USA
 
  Efficient damping of the higher-order modes (HOMs) of the superconducting cavities is essential for the proposed energy recovery linac at Cornell that aims for high beam currents and short bunches. Designing these HOM beamline absorbers has been a long endeavor, sometimes including disappointing results. We will review the design, the findings on the prototype and the final choices made for the 7 HOM absorbers being built for the main linac cryomodule (MLC) prototype.  
 
THP072 Input Coupler for Cornell ERL Main Linac 1094
 
  • V. Veshcherevich, P. Quigley
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work is supported by the National Science Foundation grant DMR-0807731.
Each cavity of the Cornell ERL Main Linac has a single coaxial type input coupler with fixed coupling, Qext = 6.5×E7. The input coupler will operate at RF power up to 5 kW at full reflection. The coupler design is based on the design of TTF-III input coupler with appropriate modifications and with taking into account the Cornell experience with couplers for ERL Injector. Seven couplers have been fabricated by CPI, Beverly and tested at Cornell on the test stand up to 5 kW CW. No major issues were noticed during the test. One coupler was attached to the prototype linac cavity. The cavity was successfully tested with great results achieved inside the horizontal test cryomodule. Six other couplers will be installed in the Main Linac Cryomodule (MLC) Prototype.