Paper | Title | Page |
---|---|---|
TUP066 | Plasma Processing of Large Surfaces with Application to SRF Cavity Modification | 586 |
|
||
Funding: Supported by DOE under grant no. DE-SC0007879. JU acknowledges support by JSA/DOE via DE-AC05-06OR23177 Plasma based surface modifications of SRF cavities present promising alternatives to the wet etching technology currently applied. To understand and characterize the plasma properties and chemical kinetics of plasma etching processes inside a single cell cavity, we have built a specially-designed cylindrical cavity with 8 observation ports. These ports can be used for holding niobium samples and diagnostic purposes simultaneously. Two frequencies (13.56 MHz and 2.45 GHz) of power source are used for different pressure, power and gas compositions. The plasma parameters were evaluated by a Langmuir probe and by an optical emission spectroscopy technique based on the relative intensity of two Ar 5p-4s lines at 419.8 and 420.07 nm. Argon 5p-4s transition is chosen to determine electron temperature in order to optimize parameters for plasma processing. Chemical kinetics of the process was observed using real-time mass spectroscopy. The effect of these parameters on niobium surface would be measured, presented at this conference, and used as guidelines for optimal design of SRF etching process. |
||
TUP070 | Characterization of Superconducting Samples With SIC System for Thin Film Developments: Status and Recent Results. | 599 |
|
||
Funding: Work supported by DOE. Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated quicker measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB2, NbTiN, Nb3Sn films, etc. We present some of the recent results that illustrate present capabilities and limitations of the system. |
||
TUP075 | Design and Commissioning Status of New Cylindrical HiPIMS Nb Coating System for SRF Cavities | 617 |
|
||
Funding: † Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. For the past 19 years Jefferson Lab has sustained a program studying niobium films deposited on small samples in order to develop an understanding of the correlation between deposition parameters, film micro-structure, and RF performance. A new cavity deposition system employing a cylindrical cathode using the HiPIMS technique has been developed to apply this work to cylindrical cavities. The status of this system will be presented. |
||
TUP079 | ECR Nb Films Grown on Amorphous and Crystalline Cu Substrates: Influence of Ion Energy | 631 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. In the pursuit of niobium (Nb) films with similar performance with the commonly used bulk Nb surfaces for Superconducting RF (SRF) applications, significant progress has been made with the development of energetic condensation deposition techniques. Using energetic condensation of ions extracted from plasma generated by Electron Cyclotron Resonance, it has been demonstrated that Nb films with good structural properties and RRR comparable to bulk values can be produced on metallic substrates. The controlled incoming ion energy enables a number of processes such as desorption of adsorbed species, enhanced mobility of surface atoms and sub-implantation of impinging ions, thus producing improved film structures at lower process temperatures. Particular attention is given to the nucleation conditions to create a favorable template for growing the final surface exposed to SRF fields. The influence of the deposition energy for both hetero-epitaxial and fiber growth modes on copper substrates is investigated with the characterization of the film surface, structure, superconducting properties and RF performance. |
||
TUP088 | NbTiN Based SIS Multilayer Structures for SRF Applications | 670 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor-Insulator-Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures via magnetron sputtering and High Power Impulse Magnetron Sputtering (HiPIMS). This paper presents the results on the characteristics of NbTiN and insulator films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films. |
||