Author: Nicol, T.H.
Paper Title Page
MOP015 Status of the SRF Development for the Project X 117
 
  • V.P. Yakovlev, T.T. Arkan, M.H. Awida, P. Berrutti, E. Borissov, A.C. Crawford, M.H. Foley, C.M. Ginsburg, I.V. Gonin, A. Grassellino, C.J. Grimm, S.D. Holmes, S. Kazakov, R.D. Kephart, T.N. Khabiboulline, V.A. Lebedev, A. Lunin, M. Merio, S. Nagaitsev, T.H. Nicol, Y.O. Orlov, D. Passarelli, T.J. Peterson, Y.M. Pischalnikov, O.V. Pronitchev, L. Ristori, A.M. Rowe, D.A. Sergatskov, N. Solyak, A.I. Sukhanov, I. Terechkine
    Fermilab, Batavia, USA
 
  Project X is a high intensity proton facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. The proposed facility is based on the SRF technology and consists of two linacs: CW linac to accelerate beam from 2.1 MeV to 3 GeV and pulsed linac accelerate 5% of the beam up to 8 GeV. In a CW linac five families of SC cavities are used: half-wave resonators (162.5 MHz); single-spoke cavities: SSR1 and SSR2 (325 MHz) and elliptical 5-cell β=0.6 and β=0.9 cavities (650 MHz). Pulsed 3-8 GeV linac linac are based on 9-cell 1.3 GHz cavities. In the paper the basic requirements and the status of development of SC accelerating cavities, auxiliaries (couplers, tuners, etc.) and cryomodules are presented as well as technology challenges caused by their specifics.  
 
MOP090 Feasibility of Using Conductively Cooled Magnets in Cryomodules of Superconducting Linacs 361
 
  • I. Terechkine, S. Cheban, T.H. Nicol, V. Poloubotko, D.A. Sergatskov
    Fermilab, Batavia, USA
 
  While trying to find an optimal way to configure cryomodule for the low energy part of a high-current, high-power superconducting linac, an option of using conductively cooled superconducting focusing lenses was evaluated. As part of this evaluation, several tests were made using existing test cryostat. The cryostat was modified by adding current feed-throughs and two conductively cooled current leads, each equipped with heat sinks at the temperatures of liquid nitrogen and liquid helium. A superconducting magnet was mounted inside the cryostat on an individual heat sink, and thermometers were installed on the leads, heat sinks, and on the magnet’s winding. In this report we provide some details of the heat exchangers’ designs, compare predicted and measured temperature distribution along the leads, and analyze results of the winding temperature measurements.  
 
FRIOB02 Development and Performance of 325 MHz Single Spoke Resonators for Project X 1187
 
  • L. Ristori, M.H. Awida, P. Berrutti, C.M. Ginsburg, I.V. Gonin, T.N. Khabiboulline, M. Merio, T.H. Nicol, D. Passarelli, A.M. Rowe, D.A. Sergatskov, A.I. Sukhanov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy.
Two types of single spoke resonators will be utilized for beam-acceleration in the low energy part of the Project X linac. SSR1 and SSR2 operate at 325 MHz and at an optimal beta of 0.22 and 0.51 respectively. After the initial phase of prototyping, a production run of 10 SSR1 resonators was recently completed in US industry. The qualification of this group of resonators in the Fermilab VTS is proceeding successfully and nearly complete. The first qualified resonator has been outfitted with a Stainless Steel helium vessel. Preliminary test results for the first jacketed SSR1 are presented. The first RF power couplers were ordered, the design of the double-lever tuning mechanism is almost complete.
 
slides icon Slides FRIOB02 [8.800 MB]