Author: Matalevich, J.
Paper Title Page
MOP009 A Summary of the Advanced Photon Source (APS) Short Pulse X-ray (SPX) R&D Accomplishments 92
 
  • A. Nassiri, N.D. Arnold, T.G. Berenc, M. Borland, B. Brajuskovic, D.J. Bromberek, J. Carwardine, G. Decker, L. Emery, J.D. Fuerst, J.P. Holzbauer, D. Horan, J.A. Kaluzny, J.S. Kerby, F. Lenkszus, R.M. Lill, H. Ma, V. Sajaev, B.K. Stillwell, G.J. Waldschmidt, M. White, G. Wu, Y. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • P. Dhakal, J. Henry, J.D. Mammosser, J. Matalevich, R.A. Rimmer, H. Wang, K.M. Wilson
    JLAB, Newport News, Virginia, USA
  • Z. Li, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.
The Advanced Photon Source Upgrade Project (APS-U) at Argonne will include generation of short-pulse x-rays based on Zholents’ [1] deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. Since early 2012, in collaboration with Jefferson National Laboratory, we have made significant progress prototyping and testing a number of single-cell deflecting cavities. We have designed, prototyped, and tested silicon carbide as damping material for higher-order-mode (HOM) dampers, which are broadband to handle the HOM power across the frequency spectrum produced by the APS beam. In collaboration with Lawrence Berkeley National Laboratory, we have developing a state-of-the-art timing and synchronization system for distributing stable rf signals over optical fiber capable of achieving tens of femtoseconds phase drift and jitter. Collaboration with the Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi- cavity geometries. This contribution provides a progress report on the current R&D status of the SPX project.
[1] A. Zholents et al., NIM A 425, 385 (1999).
 
 
MOP077 Cryomodule Component Development for the APS Upgrade Short Pulse X-Ray Project 314
 
  • J.P. Holzbauer, J.D. Fuerst, A. Nassiri, Y. Shiroyanagi, B.K. Stillwell, G.J. Waldschmidt, G. Wu
    ANL, Argonne, USA
  • G. Cheng, J. Henry, J.D. Mammosser, J. Matalevich, J.P. Preble, R.A. Rimmer, H. Wang, K.M. Wilson, M. Wiseman, S. Yang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CHI1357 at ANL and under U.S. DOE Contract No. DE-AC05-06OR23177 at Jefferson Lab.
The short pulse x-ray (SPX) part of the Advanced Photon Source Upgrade calls for the installation of a two-cavity cryomodule in the APS ring to study cavity-beam interaction, including HOM damping and cavity timing and synchronization. Design of this cryomodule is underway at Jefferson Lab in collaboration with the APS Upgrade team at ANL. The cryomodule design faces several challenges including tight spacing to fit in the APS ring, a complex set of cavity waveguides including HOM waveguides and dampers enclosed in the insulating vacuum space, and tight alignment tolerances due to the APS high beam-current (up to 150 mA). Given these constraints, special focus has been put on modifying existing CEBAF-style designs, including a cavity tuner and alignment scheme, to accommodate these challenges. The thermal design has also required extensive work including coupled thermal-mechanical simulations to determine the effects of cool-down on both alignment and waveguides. This work will be presented and discussed in this paper.
 
 
THP082 Fast Detuning Experiment on an SRF Cavity 1118
 
  • G. Wu, N.D. Arnold, T.G. Berenc, J. Carwardine, A.R. Cours, J.D. Fuerst, J.P. Holzbauer, D. Horan, A. Nassiri
    ANL, Argonne, USA
  • J. Matalevich
    JLAB, Newport News, Virginia, USA
  • Y. Yang
    TUB, Beijing, People's Republic of China
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357.
Short Pulse X-ray beamlines occupy a limited number of sectors after the APS Upgrade. The majority of APS users will not participate in the SPX experiment. As user operation requires the best beam availability, it is important that any SPX-related circuit trip that requires the extinguishment of rf power should not affect overall beam availability. As such, it is necessary to de-couple the SRF cavities from beam when such an rf trip happens. An example of such trip is that the rf window arcing has to be stopped within 1 ms, before serious damage occurs to the ceramic. As the rf amplifier shuts down the rf output, beam-driven cavity power has to be reduced, too. If cavity can be detuned fast enough and far enough away from its resonance, the beam does not have to be aborted. The SPX0 tuner is equipped with a fast response Piezo actuator in the cavity tuner stack. Such a Piezo may be able to provide a quick jolt of the cavity to provide detuning capability for the purpose of maintaining the beam in the event of an rf trip. In this paper, we describe the experimental setup and results obtained, and discuss its effectiveness for beam operation.