Paper | Title | Page |
---|---|---|
MOP024 | Novel SRF Gun Design | 145 |
|
||
Funding: Work supported under U.S. DOE Grant Application Number 98802B12-I A high brightness superconducting radio frequency (SRF) photoinjector gun cavity has been developed to a level ready for construction. The design aims to prevent operational limitations encountered with existing concepts. |
||
TUP095 | Field Emission and Consequences as Observed and Simulated for CEBAF Upgrade Cryomodules | 694 |
|
||
High gamma and neutron radiation levels were monitored at the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory (JLab) after installation of new cavity cryomodules and initial test runs in the frame of the ongoing 12 GeV upgrade program. The dose rates scaled exponentially with cavity accelerating fields, but were independent of the presence of an electron beam in the accelerator. Hence, field emission (FE) is the source of origin. This has led to concerns regarding the high field operation (100 MV per cryomodule) in the future 12 GeV era. Utilizing supercomputing, novel FE studies have been performed with electrons tracked through a complete cryomodule. It provides a principal understanding of experimental observations as well as ways to mitigate FE as best as practicable by identification of problematic cavities. | ||
THIOB01 | CEBAF Upgrade: Cryomodule Performance and Lessons Learned | 836 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract DE-AC05-06OR23177. The Thomas Jefferson National Accelerator Facility is currently engaged in the 12 GeV Upgrade Project. The goal of the 12 GeV Upgrade is a doubling of the available beam energy of the Continuous Electron Beam Accelerator Facility (CEBAF) from 6 GeV to 12 GeV. The increase in beam energy will largely be due to the addition of ten C100 cryomodules and the associated RF in the CEBAF linacs. These cryomodules are designed to deliver 100 MeV per cryomodule. Each C100 cryomodule contains a string of eight seven-cell, electro-polished, superconducting RF cavities. While an average performance of 100 MV is needed to achieve the overall 12 GeV beam energy goal, the actual performance goal for the cryomodules is an average energy gain of 108 MV to provide operational headroom. All ten of the C100 cryomodules are installed in the linac tunnels and are on schedule to be commissioned by September 2013. Commissioned performance has ranged from 104 MV to 118 MV. In May, 2012, a test of an early C100 achieved 108 MV with full beam loading. This paper will discuss the performance of the C100 cryomodules along with operational challenges and lessons learned for future designs. The U.S. Govt. retains a non-exclusive, paid-up,irrevocable,world-wide license to publish or reproduce this manuscript. |
||
![]() |
Slides THIOB01 [2.534 MB] | |