Author: Li, Z.
Paper Title Page
MOP009 A Summary of the Advanced Photon Source (APS) Short Pulse X-ray (SPX) R&D Accomplishments 92
 
  • A. Nassiri, N.D. Arnold, T.G. Berenc, M. Borland, B. Brajuskovic, D.J. Bromberek, J. Carwardine, G. Decker, L. Emery, J.D. Fuerst, J.P. Holzbauer, D. Horan, J.A. Kaluzny, J.S. Kerby, F. Lenkszus, R.M. Lill, H. Ma, V. Sajaev, B.K. Stillwell, G.J. Waldschmidt, M. White, G. Wu, Y. Yang, A. Zholents
    ANL, Argonne, USA
  • J.M. Byrd, L.R. Doolittle, G. Huang
    LBNL, Berkeley, California, USA
  • P. Dhakal, J. Henry, J.D. Mammosser, J. Matalevich, R.A. Rimmer, H. Wang, K.M. Wilson
    JLAB, Newport News, Virginia, USA
  • Z. Li, L. Xiao
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06H11357.
The Advanced Photon Source Upgrade Project (APS-U) at Argonne will include generation of short-pulse x-rays based on Zholents’ [1] deflecting cavity scheme. We have chosen superconducting (SC) cavities in order to have a continuous train of crabbed bunches and flexibility of operating modes. Since early 2012, in collaboration with Jefferson National Laboratory, we have made significant progress prototyping and testing a number of single-cell deflecting cavities. We have designed, prototyped, and tested silicon carbide as damping material for higher-order-mode (HOM) dampers, which are broadband to handle the HOM power across the frequency spectrum produced by the APS beam. In collaboration with Lawrence Berkeley National Laboratory, we have developing a state-of-the-art timing and synchronization system for distributing stable rf signals over optical fiber capable of achieving tens of femtoseconds phase drift and jitter. Collaboration with the Advanced Computations Department at Stanford Linear Accelerator Center is looking into simulations of complex, multi- cavity geometries. This contribution provides a progress report on the current R&D status of the SPX project.
[1] A. Zholents et al., NIM A 425, 385 (1999).
 
 
MOP024 Novel SRF Gun Design 145
 
  • F. Marhauser
    Muons, Inc, Illinois, USA
  • K.H. Lee, Z. Li
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported under U.S. DOE Grant Application Number 98802B12-I
A high brightness superconducting radio frequency (SRF) photoinjector gun cavity has been developed to a level ready for construction. The design aims to prevent operational limitations encountered with existing concepts.
 
 
THP041 Optimization of the Double Quarter Wave Crab Cavity Prototype for Testing at SPS 995
 
  • S. Verdú-Andrés, S.A. Belomestnykh, I. Ben-Zvi, J. Skaritka, Q. Wu, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
  • S.A. Belomestnykh, I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • R. Calaga
    CERN, Geneva, Switzerland
  • Z. Li
    SLAC, Menlo Park, California, USA
 
  Funding: Research supported by EU FP7 HiLumi LHC – No. 284404, and by US DOE through Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 and the US LHC Accelerator Research Program (LARP).
The crab cavity program for LHC luminosity upgrade envisages the testing of at least one of the three competing crab cavities in the Super Proton Synchrotron (SPS) of CERN by 2016. This paper presents the design optimization of a Double Quarter Wave Crab Cavity (DQWCC) prototype suited for testing in SPS.
 
 
FRIOA03 Fabrication and Testing of Deflecting Cavities for APS 1170
 
  • J.D. Mammosser
    JLab, Newport News, Virginia, USA
  • P. Dhakal, J. Henry, R.A. Rimmer, H. Wang, K.M. Wilson
    JLAB, Newport News, Virginia, USA
  • J.F. Fuerst, J.P. Holzbauer, J.S. Kerby, A. Nassiri, G.J. Waldschmidt, G. Wu, Y. Yang
    ANL, Argonne, USA
  • F. He
    PKU, Beijing, People's Republic of China
  • Z. Li
    SLAC, Menlo Park, California, USA
 
  Abstract Jefferson Lab in Newport News, Virginia, in collaboration with Argonne National Laboratory, Argonne, Il, has fabricated and tested three production, 2.815 GHz crab cavities for Argonne’s Short-Pulse X-ray project. These cavities are unique in that the cavity and waveguides were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The cavity and helium vessel design along with the RF performance requirements makes this project extremely challenging for fabrication. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.  
slides icon Slides FRIOA03 [22.677 MB]