Paper | Title | Page |
---|---|---|
MOP010 | Spiral2 Cryomodules B Tests Results | 95 |
|
||
Assembly and tests of the SPIRAL2 superconducting linac's cryomodules at CEA/Saclay and IPN/Orsay have now reached cruising speed after having faced a series of problems, among them contamination. 19 cryomodules are composing the whole Linac and IPN Orsay is in charge of the 7 cryomodules B, housing two 88MHz, beta 0.12 Quarter-Wave Resonators. Two cryomodules have been successfully assembled and tested up to the nominal gradient of 6.5 MV/m for all cavities with also total cryogenic losses under specifications. One of them is fully qualified and has been already delivered to GANIL. The second one showed misalignment on one cavity which could lead to partial disassembly. This paper will present the results of those cryomodules tests as well as the status of the remaining ones. | ||
MOP057 | Developments and Tests of a 700 MHz Cryomodule for the Superconducting Linac of MYRRHA | 250 |
|
||
Funding: This work is being supported by the European Atomic Energy Community’s EURATOM) Seventh Framework Programme under grant agreement n°269565(MAX project). The MYRRHA (“Multi-purpose Hybrid Research reactor for High-tech Applications”) project aims at the construction of a new flexible fast spectrum research reactor. This reactor will operate as an Accelerator Driven System demonstrator. The criticality will be sustained by an external spallation neutron flux; produced thanks to a 600 MeV high intensity proton beam. This CW beam will be delivered by a superconducting linac which must fulfil very stringent reliability requirements. In this purpose, the accelerator design is based on a redundant and fault-tolerant scheme to enable the rapid mitigation of RF failures. To carry out “real scale” reliability-oriented experiments a prototype of cryomodule was developed by INFN Milano and installed at IPN Orsay. The module holds a 700 MHz 5-cell elliptical cavity (βg = 0.47) equipped with its blade frequency tuner. Several tests were carried out to commission the experimental set-up. We review here the obtained results and the lessons learnt by operating this module, as well as the on-going developments. |
||
TUP092 | MUSICC3D: a Code for Modeling the Multipacting | 683 |
|
||
IPNO has conducted an effort to develop a 3D code for modeling multipacting in RF structures. The MUSICC3D program is using particle in cell method. Based on Runge Kutta method and using relativistic equation of motion, it solves the trajectory of a particle (e-) in the RF field. The integrations over the multi differential Secondary Emission Yield (SEY) (Ein, Alphain ,Eout, Alphaout)) is made with Montecarlo method. Two running modes are available. The first one is using a model of virtual particle (i.e. the charge of a unique particle “rebounding” in the interior of the cavity is made by the product of SEYs occurring at each interaction with the walls). The other one makes generation of a full cascade of individual electrons. Benchmarking calculations have been done with analytical calculations and 2D particle in cell code (MULTIPAC). In all these cases the effects of the different inputs for the multi differential SEY have been investigated. Its intend is to give a guide to determine which precision on the SEY is needed to perform accurate multipacting calculations. Benchmarking with real cavity has been recently started and results with QWR Spiral2 cavities are presented.
Hatch, Multipacting Modes etc., Physical Review. Wood, Investigations into Multipactor Breakdown etc., ESA Journal. Geng, Multipacting Simulations etc., Particule Accelerator Conference. |
||