Author: James, C.
Paper Title Page
TUP082 Materials Analysis of CED Nb Films Being Coated on Bulk Nb Single Cell SRF Cavities 638
 
  • X. Zhao, C.E. Reece
    JLab, Newport News, Virginia, USA
  • G. Ciovati
    Jefferson Lab, Newport News, Virginia, USA
  • I. Irfan, C. James, M. Krishnan
    AASC, San Leandro, California, USA
  • A.D. Palczewski
    JLAB, Newport News, Virginia, USA
 
  Funding: This research is supported at AASC by DOE via Grant No. DE-FG02-08ER85162 and Grant No. DE-SC0004994 and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DEAC05- 06OR23177
This study is an on-going research on depositing a Nb film on the internal wall of bulk Nb single cell SRF cavities, via an coaxial energetic condensation (CED) facility at AASC company. The motivation is to firstly create a homoepitaxy-like Nb/Nb film in a scale of a ~1.5GHz RF single cell cavity. Next, through SRF measurement and materials analysis, it might reveal the baseline properties of the CED-type homoepitaxy Nb films. Such knowledge of Nb-Nb homo-epitaxy is useful to create future realistic SRF cavity film coatings, such as hetero-epitaxy Nb/Cu Films, or template-layer-mitigated Nb films. One large-grain, and three fine grain bulk Nb cavity were coated. They went through cryogenic RF measurement. Preliminary results show that the Q0 of a Nb film at 2 K and low rf field, produced by CED, could be close to that of the pre-coated bulk Nb surface (being CBP'ed plus a light EP); but the quality drops rapidly for increasing rf field. We are investigating if the severe Q0-slope is caused by hydrogen incorporation before deposition, or is determined by some structural defects during Nb film growth.