Author: Ho, K.M.V.
Paper Title Page
MOP071 Record Quality Factor Performance of the Prototype Cornell ERL Main Linac Cavity in the Horizontal Test Cryomodule 300
 
  • N.R.A. Valles, R.G. Eichhorn, F. Furuta, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Supported by NSF grant DMR-0807731
Future SRF linac driven accelerators operated in CW mode will require very efficient SRF cavities with high intrinsic quality factors Q at medium accelerating fields. Cornell has recently finished testing the fully equipped 1.3 GHz, 7-cell main linac cavity for the Cornell Energy Recovery Linac in a horizontal test cryomodule (HTC). Measurements characterizing the fundamental mode’s quality factor have been completed, showing record Q performance. In this paper, we present detailed quality factor vs gradient results for three HTC assembly stages. We show that the performance of an SRF cavity can be maintained when installed into a cryomodule, and that thermal cycling reduces residual surface resistance. We present world record results for a fully equipped multicell cavity in a cryomodule, reaching intrinsic quality factors at operating accelerating field of Q(E =16.2 MV/m, 1.8K) > 6·1010 and Q(E =16.2 MV/m, 1.6K) > 1.0·1011, corresponding to a very low residual surface resistance of 1.1 nOhm.
 
 
THIOB02 High Q Cavities for the Cornell ERL Main Linac 844
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, B. Elmore, F. Furuta, A. Ganshin, G.M. Ge, D. Gonnella, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, J.J. Kaufman, M. Liepe, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V.D. Shemelin, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  While SRF research for linear colliders was focused on achieving high gradients, Cornell’s proposal for an energy recovery linac (ERL) demanded for low cw losses. Starting several years ago, a high-Q R&D phase was launched that led to remarkable results recently: A fully dressed cavity (7 cells, 1.3 GHz) with side-mounted input coupler and beamline HOM absorbers achieved a Q of 3.5·1010 ((16 MV/m, 1.8 K). This talk will review the staged approach we have chosen in testing a single cavity in a horizontal short cryomodule (HTC), report results on each step and conclude on our findings about preserving high Q from vertical testing. We also discuss the production of six additional cavities as we progress toward constructing a full 6-cavity cryomodule as a prototype for Cornell’s main linac module  
slides icon Slides THIOB02 [8.378 MB]