Paper | Title | Page |
---|---|---|
MOP014 | Cold Tests of SSR1 Resonators for PXIE | 112 |
|
||
Fermilab is currently building the Project X Injector experiment (PXIE). PXIE linac will accelerate 1 mA H− beam up to 30 MeV and serve as a testbed for validation of Project X concepts and mitigation of technical risks. A cryomodule of eight superconducting RF Single Spoke Resonators of type 1 (SSR1) cavities operating at 325 MHz is an integral part of PXIE. Ten SSR1 cavities were manufactured in industry and delivered to Fermilab. In this paper we discuss surface processing and tests of bare SSR1 cavities at the Fermilab Vertical Test Stand (VTS). We report on the measured performance parameters of nine cavities achieved during tests. | ||
MOP015 | Status of the SRF Development for the Project X | 117 |
|
||
Project X is a high intensity proton facility being developed to support a world-leading program of Intensity Frontier physics over the next two decades at Fermilab. The proposed facility is based on the SRF technology and consists of two linacs: CW linac to accelerate beam from 2.1 MeV to 3 GeV and pulsed linac accelerate 5% of the beam up to 8 GeV. In a CW linac five families of SC cavities are used: half-wave resonators (162.5 MHz); single-spoke cavities: SSR1 and SSR2 (325 MHz) and elliptical 5-cell β=0.6 and β=0.9 cavities (650 MHz). Pulsed 3-8 GeV linac linac are based on 9-cell 1.3 GHz cavities. In the paper the basic requirements and the status of development of SC accelerating cavities, auxiliaries (couplers, tuners, etc.) and cryomodules are presented as well as technology challenges caused by their specifics. | ||
MOP036 | New Technique and Result of Laser Welded SCRF Cavity Developed at RRCAT | 186 |
|
||
A new technique to fabricate SCRF cavities with the help of laser welding process has been developed at Raja Ramanna Centre for Advanced Technology RRCAT), Indore, Department of Atomic Energy, India. In this technique, a pulsed Nd:YAG laser has been used and welding was performed in inert gas environment, in a specially designed welding rig. The advantages of this technique are reduced cost, small heat affected zone, no necessity to weld in vacuum and enhanced rate of production. The paper describes the technique and fabrication method of a single-cell 1.3 GHz SCRF cavity which was fabricated at RRCAT with this new technique. It also discusses the test result of this cavity which was processed and tested at Fermilab. The cavity reached an Eacc of 17MV/m with a Q0 of 1.4 E +10 at 2K. The cavity is being barrel polished for further improvement. | ||
MOP068 | NGLS Linac Design | 286 |
|
||
Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 The Next Generation Light Source (NGLS) is a design concept for a multibeamline soft x-ray FEL array powered by a CW superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. This paper describes the concepts for the cavity and cryostat design operating at 1.3 GHZ and based on minimal modifications to the design of ILC cryomodules, This leverages the extensive experience derived from R&D that resulted in the ILC design. Due to the different nature of the two applications, particular attention is given now to high loaded Q operation and microphonics control, as well as high reliability and expected up time. The work describes the design and configuration of the linac, including choice of gradient, possible modes of operation, cavity design and RF power, as well as the consequent requirements for the cryogenic system. |
||
MOP073 | IHEP 1.3 GHz Low Loss Large Grain 9-cell Cavity Fabrication, Processing and Test | 305 |
|
||
The combination of the low-loss shape and large grain niobium material is expected to be the possible way to achieve higher gradient and lower cost for ILC 9-cell cavities, and will be essential for the ILC 1 TeV upgrade. As the key component of the “IHEP 1.3 GHz SRF Accelerating Unit Project”, a low-loss shape 9-cell cavity with full end groups using Ningxia large grain niobium (IHEP-02) was fabricated at IHEP in 2012. The cavity was processed (CBP and EP) and tested at FNAL. The cavity processing,test performance and gradient limitation is reported in this paper. We will weld the helium vessel, assemble the magnetic shield and install the cavity to IHEP ILC-TC1 cryomodule. | ||
TUP050 |
R&D Program for 650 MHz Niobium Cavities for Project X | |
|
||
Funding: Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. We report the first test results of several 650 MHz single cell niobium cavities processed at Fermilab. The target for the 5-cell 650 MHz cavities for Project X is CW operation at magnetic peak field ~ 60-70 mT, making high quality factors at medium accelerating fields the main goal of the surface processing R&D. We will discuss how the performance vary with the different surface processing and parameters/criteria of choice for the final surface preparation sequence. |
||
TUP060 | Acid Free Extended Mechanical Polishing R&D | 564 |
|
||
We report the progress in the development of a centrifugal barrel polishing recipe which can lead to standard cavity performance without the need of any chemical treatments. Q ~ 1010 at 20 MV/m and gradients above 35 MV/m have already been demonstrated for cavities whose preparation sequence was CBP, degassing and no subsequent chemical treatments. Results of studies on the effect of different CBP media on RF performance will be reported, including full body T-map showing the distribution of RF losses. | ||
THP030 | Superconducting RF Cavity Development With UK Industry | 966 |
|
||
As part of a continuing STFC Innovations Partnership Scheme (IPS) grant, in support of enabling UK industry to address the large potential market for superconducting RF structures Daresbury Laboratory and Shakespeare Engineering Ltd are developing the capability to fabricate, process and test a niobium 9-cell 1.3 GHz superconducting RF cavity. A single-cell cavity fabricated under this grant was surface processed and tested at Fermilab, and achieved an accelerating gradient in excess of 40 MV/m at an unloaded quality factor in excess of 1.0 x 1010. This paper presents the results of the single-cell cavity testing and discusses the progress made to date in the development of the design and manufacture of a 9-cell niobium cavity, which Shakespeare Engineering Ltd will fabricate and which is anticipated to be qualified in 2014. | ||
FRIOB02 | Development and Performance of 325 MHz Single Spoke Resonators for Project X | 1187 |
|
||
Funding: Operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. Two types of single spoke resonators will be utilized for beam-acceleration in the low energy part of the Project X linac. SSR1 and SSR2 operate at 325 MHz and at an optimal beta of 0.22 and 0.51 respectively. After the initial phase of prototyping, a production run of 10 SSR1 resonators was recently completed in US industry. The qualification of this group of resonators in the Fermilab VTS is proceeding successfully and nearly complete. The first qualified resonator has been outfitted with a Stainless Steel helium vessel. Preliminary test results for the first jacketed SSR1 are presented. The first RF power couplers were ordered, the design of the double-lever tuning mechanism is almost complete. |
||
![]() |
Slides FRIOB02 [8.800 MB] | |