Author: French, R.E.
Paper Title Page
TUP028 Investigation of Spatial Variation of the Surface Resistance of a Superconducting RF Cavity 483
 
  • D. Gonnella, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R.E. French
    Corning Community College, Corning, USA
 
  Funding: NSF
Cornell has recently completed a single cell temperature mapping system with a resolution of a few tenths of a millikelvin, corresponding to a surface resistance resolution of 1 nOhm. A superconducting RF cavity was tested using temperature mapping and the surface resistance was extracted from the temperature mapping data as function of position on the cavity surface. The surface resistance was profiled across the surface of the cavity between 5 and 35 MV/m and at different temperatures between 1.6 and 2.1 K. From BCS fitting of the local surface resistance, the spatial variation and the field dependence of the mean free path, energy gap, and residual resistance was found. These studies give interesting new insight into the degree of variation of the properties of the superconductor over the surface of the cavity.