Author: Flisgen, T.
Paper Title Page
MOP092 Computation of Wakefields and HOM Port Signals by Means of Reduced Order Models 364
 
  • J. Heller, T. Flisgen, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock, Germany
 
  The investigation of wakefields is an important task in the design and operation of particle accelerators. Computer simulations are a reliable tool to extend the understanding of these effects. This contribution presents an application example of a new method to compute wakefields as well as parameters derived from those fields, such as higher order mode (HOM) port signals. The method is based on a reduced order model of the structure created by as set of 3D eigenmodes, a set of 2D waveguide port modes and the current density of the beam. In contrast to other wakefield computations, the proposed method operates directly on the reduced order model. Therefore, once having established this model, the beam-excited fields can be determined quickly for different beam parameters. As a matter of fact, only a small part of the reduced system has to be recomputed for every sweep point. From these advantages it is obvious, that the method is highly compatible for beam parameter studies. In a proof of principal the effectiveness of the method compared to established methods of wakefield computations in terms of computational time and accuracy is shown.