Author: Cooper, C.A.
Paper Title Page
MOP036 New Technique and Result of Laser Welded SCRF Cavity Developed at RRCAT 186
 
  • P. Khare, R. Arya, J. Dwivedi, R. Ghosh, G. Gilankar, C. Gupta, P.D. Gupta, A. Jain, S.C. Joshi, G.V. Kane, R. Kaul, P.K. Kush, G. Mundra, S.M. Oak, C.K. Pithawa, P. Ram Sankar, S.B. Roy, V.C. Sahni, R.S. Sandha, P. Shrivastava, B.N. Upadhyay
    RRCAT, Indore (M.P.), India
  • C.A. Cooper, C.M. Ginsburg, A. Grassellino, C.S. Mishra, A.M. Rowe
    Fermilab, Batavia, USA
 
  A new technique to fabricate SCRF cavities with the help of laser welding process has been developed at Raja Ramanna Centre for Advanced Technology RRCAT), Indore, Department of Atomic Energy, India. In this technique, a pulsed Nd:YAG laser has been used and welding was performed in inert gas environment, in a specially designed welding rig. The advantages of this technique are reduced cost, small heat affected zone, no necessity to weld in vacuum and enhanced rate of production. The paper describes the technique and fabrication method of a single-cell 1.3 GHz SCRF cavity which was fabricated at RRCAT with this new technique. It also discusses the test result of this cavity which was processed and tested at Fermilab. The cavity reached an Eacc of 17MV/m with a Q0 of 1.4 E +10 at 2K. The cavity is being barrel polished for further improvement.  
 
MOP073 IHEP 1.3 GHz Low Loss Large Grain 9-cell Cavity Fabrication, Processing and Test 305
 
  • J.Y. Zhai, J. Gao, S. Jin, Z.Q. Li, Y. Liu, Z.C. Liu, Z.H. Mi, X.H. Peng, T.X. Zhao, H.J. Zheng
    IHEP, Beijing, People's Republic of China
  • C.A. Cooper, C.M. Ginsburg, T.N. Khabiboulline, A.M. Rowe, D.A. Sergatskov
    Fermilab, Batavia, USA
  • J.X. Wang, H. Yu, H. Yuan
    BIAM, Beijing, People's Republic of China
 
  The combination of the low-loss shape and large grain niobium material is expected to be the possible way to achieve higher gradient and lower cost for ILC 9-cell cavities, and will be essential for the ILC 1 TeV upgrade. As the key component of the “IHEP 1.3 GHz SRF Accelerating Unit Project”, a low-loss shape 9-cell cavity with full end groups using Ningxia large grain niobium (IHEP-02) was fabricated at IHEP in 2012. The cavity was processed (CBP and EP) and tested at FNAL. The cavity processing,test performance and gradient limitation is reported in this paper. We will weld the helium vessel, assemble the magnetic shield and install the cavity to IHEP ILC-TC1 cryomodule.  
 
TUIOB01 R&D Progress in SRF Surface Preparation With Centrifugal Barrel Polishing (CBP) for both Nb and Cu 398
 
  • A.D. Palczewski
    JLAB, Newport News, Virginia, USA
  • B. Bullock
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • C.A. Cooper
    Fermilab, Batavia, USA
  • S.C. Joshi
    RRCAT, Indore (M.P.), India
  • A. Navitski
    DESY, Hamburg, Germany
  • A.A. Rossi
    INFN/LNL, Legnaro (PD), Italy
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Centrifugal Barrel polishing (CBP) is becoming a common R&D tool for SRF cavity preparation around the word. During the CBP process a cylindrically symmetric SRF cavity is filled with relatively cheap and environmentally friendly abrasive and sealed. The cavity is then spun around the cylindrical axis at high speeds uniformly conditioning the inner surface. This uniformity is especially relevant for SRF application because many times a single manufacturing defects limits cavity’s performance well below it’s theoretical limit. In addition CBP has created surfaces with roughness’s on the order of 10’s of nm which create a unique surface for wet chemistry or thin film deposition. CBP is now being utilized at Jefferson Laboratory, Fermi Laboratory and Cornell University in the US, Ko Enerugi Kasokuki Kenkyu Kiku in Japan, Deutsches Elektronen-Synchrotron in Germany, Laboratori Nazionali di Legnaro in Italy, and Raja Ramanna Centre for Advanced Technology in India. In this talk we will present current CBP research from each lab including polishing recipes, equipment, post CBP chemistry/heat treatment, and subsequent cryogenic cavity tests on niobium as well as copper cavities.
 
slides icon Slides TUIOB01 [2.204 MB]  
 
TUP060 Acid Free Extended Mechanical Polishing R&D 564
 
  • C.A. Cooper, A.C. Crawford, C.M. Ginsburg, A. Grassellino, R.D. Kephart, O.S. Melnychuk, A. Romanenko, A.M. Rowe, D.A. Sergatskov
    Fermilab, Batavia, USA
 
  We report the progress in the development of a centrifugal barrel polishing recipe which can lead to standard cavity performance without the need of any chemical treatments. Q ~ 1010 at 20 MV/m and gradients above 35 MV/m have already been demonstrated for cavities whose preparation sequence was CBP, degassing and no subsequent chemical treatments. Results of studies on the effect of different CBP media on RF performance will be reported, including full body T-map showing the distribution of RF losses.  
 
THP030 Superconducting RF Cavity Development With UK Industry 966
 
  • A.E. Wheelhouse, R.K. Buckley, L.S. Cowie, P. Goudket, A.R. Goulden, P.A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C.A. Cooper, C.M. Ginsburg, A. Grassellino, O.S. Melnychuk, A.M. Rowe, D.A. Sergatskov
    Fermilab, Batavia, USA
  • J.R. Everard, N. Shakespeare
    Shakespeare Engineering, South Woodham Ferrers, Essex, United Kingdom
 
  As part of a continuing STFC Innovations Partnership Scheme (IPS) grant, in support of enabling UK industry to address the large potential market for superconducting RF structures Daresbury Laboratory and Shakespeare Engineering Ltd are developing the capability to fabricate, process and test a niobium 9-cell 1.3 GHz superconducting RF cavity. A single-cell cavity fabricated under this grant was surface processed and tested at Fermilab, and achieved an accelerating gradient in excess of 40 MV/m at an unloaded quality factor in excess of 1.0 x 1010. This paper presents the results of the single-cell cavity testing and discusses the progress made to date in the development of the design and manufacture of a 9-cell niobium cavity, which Shakespeare Engineering Ltd will fabricate and which is anticipated to be qualified in 2014.