Author: Batchelor, A.D.
Paper Title Page
TUP088 NbTiN Based SIS Multilayer Structures for SRF Applications 670
 
  • A-M. Valente-Feliciano, G.V. Eremeev, H.L. Phillips, C.E. Reece
    JLAB, Newport News, Virginia, USA
  • A.D. Batchelor
    NCSU AIF, Raleigh, North Carolina, USA
  • R.A. Lukaszew
    The College of William and Mary, Williamsburg, USA
  • J.K. Spradlin
    JLab, Newport News, Virginia, USA
  • Q.G. Yang
    NSU, Norfolk, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
For the past three decades, bulk niobium has been the material of choice for SRF cavities applications. RF cavity performance is now approaching the theoretical limit for bulk niobium. For further improvement of RF cavity performance for future accelerator projects, Superconductor-Insulator-Superconductor (SIS) multilayer structures (as recently proposed by Alex Gurevich) present the theoretical prospect to reach RF performance beyond bulk Nb, using thinly layered higher-Tc superconductors with enhanced Hc1. Jefferson Lab (JLab) is pursuing this approach with the development of NbTiN and AlN based multilayer SIS structures via magnetron sputtering and High Power Impulse Magnetron Sputtering (HiPIMS). This paper presents the results on the characteristics of NbTiN and insulator films and the first RF measurements on NbTiN-based multilayer structure on thick Nb films.