Paper | Title | Page |
---|---|---|
TUP017 | Study of Slip and Dislocations in High Purity Single Crystal Nb for Accelerator Cavities | 461 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics, through Grant No. DE-S0004222. SRF Cavities can be formed by deep drawing slices from Nb ingots with large grains. Crystal orientation dependent slip system activities affect the shape change of ingot slices during deep drawing, and form a dislocation substructure that affects subsequent recrystallization and ultimately, cavity performance. Two groups of single crystal tensile specimens with different orientations were extracted from a large grain ingot slice. The first group was deformed monotonically to 40% engineering strain. Analysis revealed that slip was preferred on {112} planes. The second group was heat treated at 800°C for two hours, and then deformed incrementally to 40% engineering strain using an in situ tensile stage. Crystal orientations and surface images were recorded at each increment of deformation. Results indicate that the heat treated group had lower yield strengths, and the details of slip activity differed in the annealed samples. Active slip systems were investigated and compared to the first group. Direct observations of dislocations were performed in selected specimens using electron channeling contrast imaging, to determine how slip affects the dislocation substructure. |
||