Paper | Title | Page |
---|---|---|
TUP069 | The Copper Substrate Developments for the HIE-ISOLDE High-Beta Quarter Wave Resonator | 596 |
|
||
A new linac using superconducting quarter-wave resonators (QWR) is under construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are made by Niobium sputtered on a bulk Copper substrate. The working frequency at 4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the beam axis with a total maximum power dissipation of 10 W. The properties of the cavity substrate have a direct impact on the final cavity performance. The Copper substrate has to ensure an optimum surface for the Niobium sputtered layer. It has also to fulfill the required geometrical tolerances, the mechanical stability during operation and the thermal performance to optimally extract the RF dissipated power on cavity walls. The paper presents the mechanical design of the high β cavities. The procurement process of the Copper raw material is detailed, including specifications and tests. The manufacture sequence of the complete cavity is then explained and the structural and thermo-mechanical behavior during the tests performed on a prototype cavity is discussed. The industrialization strategy is presented in view of final production of the cavities. | ||
TUP076 | Preliminary Results of Nb Thin Film Coating for HIE-ISOLDE SRF Cavities Obtained by Magnetron Sputtering | 620 |
|
||
Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI. In the context of the HIE-ISOLDE upgrade at CERN, several new facilities for the niobium sputter coating of QWR-type superconducting RF accelerating cavities have been developed, built, and successfully operated. In order to further optimize the production process of these cavities the magnetron sputtering technique has been further investigated and continued as an alternative to the already successfully operational DC bias diode sputtering method. The purpose of this poster is to present the results obtained with this technique. The Nb thickness profile along the cavity and its correlation with the electro-magnetic field distribution inside the cavity are discussed. Film structure, morphology and Residual Resistivity Ratio (RRR) will be considered as well and compared with films obtained by DC bias diode sputtering. Finally these results will be compared with RF characterization and measurement of a production-like magnetron-coated cavity. |
||
TUP077 | Thin Film Coating Optimization for HIE-ISOLDE SRF Cavities: Coating Parameters Study and Film Characterization | 623 |
|
||
Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI. The HIE-ISOLDE project at CERN requires the production of 32 cavities in order to increase the energy of the beam. The Quarter Wave Resonators (QWRs) cavities of complex cylindrical geometry (0.3m diameter and 0.8m height) are made of copper and are coated with a thin superconducting layer of niobium. In the present phase of the project the aim is to obtain a niobium film, using the DC bias diode sputtering technique, providing adequate high quality factor of the cavities and to ensure reproducibility for the future series production. After an overview of the explored coating parameters (hardware and process), the resulting film characteristics, thickness profile along the cavity, structure and morphology (SEM measurements) and Residual Resistivity Ratio (RRR) of the Nb film will be shown. The effect of the sputtering gas process pressure and configuration of the coating setup will be highlighted. |
||
TUP078 | Nb Coating Developments with HIPIMS for SRF Applications | 627 |
|
||
In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. A study is under way at CERN to apply this technology for the Nb coating of SRF 1.3-1.5 GHz Cu cavities, and in parallel at SHU the plasma physics and its correlation with film morphology are being investigated. Recent results achieved with this technique are presented in the paper. | ||
FRIOB04 | CERN Developments for 704 MHz Superconducting Cavities | 1198 |
|
||
The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium β=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the status of the cavity manufacturing and surface preparation is detailed. | ||
![]() |
Slides FRIOB04 [8.677 MB] | |