Author: Alberty, L.
Paper Title Page
TUP069 The Copper Substrate Developments for the HIE-ISOLDE High-Beta Quarter Wave Resonator 596
 
  • L. Alberty, G. Arnau-Izquierdo, I. Aviles Santillana, S. Calatroni, O. Capatina, A. D'Elia, G. Foffano, Y. Kadi, P. Moyret, K.M. Schirm, T. Tardy, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  • A. D'Elia
    UMAN, Manchester, United Kingdom
 
  A new linac using superconducting quarter-wave resonators (QWR) is under construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are made by Niobium sputtered on a bulk Copper substrate. The working frequency at 4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the beam axis with a total maximum power dissipation of 10 W. The properties of the cavity substrate have a direct impact on the final cavity performance. The Copper substrate has to ensure an optimum surface for the Niobium sputtered layer. It has also to fulfill the required geometrical tolerances, the mechanical stability during operation and the thermal performance to optimally extract the RF dissipated power on cavity walls. The paper presents the mechanical design of the high β cavities. The procurement process of the Copper raw material is detailed, including specifications and tests. The manufacture sequence of the complete cavity is then explained and the structural and thermo-mechanical behavior during the tests performed on a prototype cavity is discussed. The industrialization strategy is presented in view of final production of the cavities.  
 
THP084 The Tuning System for the HIE-ISOLDE High-Beta Quarter Wave Resonator 1121
 
  • P. Zhang, L. Alberty, L. Arnaudon, K. Artoos, S. Calatroni, O. Capatina, A. D'Elia, Y. Kadi, I. Mondino, T. Renaglia, D. Valuch, W. Venturini Delsolaro
    CERN, Geneva, Switzerland
  • A. D'Elia
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported in part by a Marie Curie Early Initial Training Network Fellowship of the European Community's 7th Programme under contract number PITN-GA-2010-264330-CATHI.
A new linac using superconducting quarter-wave resonators (QWR) is under construction at CERN in the framework of the HIE-ISOLDE project. The QWRs are made by Niobium sputtered on a bulk Copper substrate. The working frequency at 4.5 K is 101.28 MHz and they will provide 6 MV/m accelerating gradient on the beam axis with a total maximum power dissipation of 10 W on cavity walls. A tuning system is required in order to both minimize the forward power variation in beam operation and to compensate the unavoidable uncertainties in the frequency shift during the cool-down process. The tuning system has to fulfill a complex combination of RF, structural and thermal requirements. The paper presents the functional specifications and details the tuning system RF and mechanical design and simulations. The results of the tests performed on a prototype system are discussed and the industrialization strategy is presented in view of final production.