RF AND SRF COMPONENTS FOR BERLINPRO

W. Anders, A. Jankowiak, T. Kamps, J. Knobloch, O. Kugeler, A. Neumann

~ 50 MeV Energy Merger energy ~ 6.5 MeV 100 mA Beam current 1 mm mrad (normalized) Emittance superconducting RF photo injector Electron source 270 kW 1.3 GHz Gun transmitter 3 x 2-cell Booster cavities 2 x 200 (270) kW Booster transmitter + 1x 15 (200) kW 3 x 7 cell Linac cavities Linac transmitter 3 x 15 kW

BERLinPro booster module is planned to be based on the Cornell module seen on the picture. Number of 2cell cavities will be reduced from 5 to 3 and it is planned to use cERL couplers instead of Cornell couplers for higher power capacity

1.5-2MeV@100mA

cERL fundamental power couplers on the coupler test stand. They are the candidates to be used at the photo injector and the booster cavities

Stage-0 SRF photo injector cavity cell

3 x 2 cell cavity, 4.5MeV@100mA

3 x 7 cell cavities, 44MeV 50MeV, 100mA 1 mm mrad (norm), 2ps

Layout of B*ERL*inPro

Basic parameters of B*ERL*inPro.

The 80 kW IOT based transmitter used at the MLS. This transmitter is used as prototype for the klystron-based 270 kW transmitters for the injector cavites at B*ERL*inPro.

Vacuum-vessel flange (300 K)

80 K "Cavity vacuum"

"Coupler vacuum"

Pumpout port

Photomultiplier

First outline of a 7-cell cavity with waveguide HOM dampers (courtesy B. Riemann)

Decision is open to use waveguide or coaxial fundamental power coupler

Wolfgang Anders
Helmholtz-Zentrum Berlin (HZB)
Albert Einstein Str. 15
12489 Berlin
Germany
wolfgang.anders@helmholtz-berlin.de

Coaxial fundamental power coupler, one possibility to use at the linac cavities

Waveguide fundamental power coupler (CEBAF), one possibility to use at the linac cavities