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Abstract 

Reproducible operation at high performances of sc 
cavities is required for superconducting linacs, at least in 
their high energy section in the case of accelerators for 
proton beams. High beta elliptical cavities are thus of 
concern, and, to achieve required performances for such 
cavities, surface preparation including electro-polishing 
(EP) is recommended. 

Moreover, for large dimension cavities we consider the 
EP treatment in vertical configuration (abbreviated as 
VEP) to be more appropriate. For this reasons, a VEP set-
up has been designed at Saclay for the electro-polishing 
of muticells elliptical cavities. 

Chosen equipment will make it possible to use a wide 
range of parameters (voltage, flowrate, temperature, 
nitrogen inerting) with R&D purpose in mind. 
Optimization will be done using modeling with COMSOL 
software for different cavities. As examples, we present 
some results for the 704 MHz high-beta SPL cavity and 
the 1300 MHz ILC cavity and show the influence of 
cathode shape on both acid flow and electric field 
distribution during the process. At last, importance of the 
size of the cavity will be commented. 

INTRODUCTION 
Electro-polishing (abbreviated as EP) is believed to be 

the most desirable treatment for SRF cavities [1].  EP is 
an anodic electrochemical treatment carried out in 
concentrated hydrofluoric - sulphuric (HF-H2SO4) acids. 
Generally, the cavity is electro-polished following a 
process developed by KEK [1]: A voltage is applied 
between the cavity and a cylindrical aluminium cathode 
(set in its centre) while it is placed in horizontal position, 
rotating, and half-filled with the circulating acid. This 
process makes it possible to reach high gradients on 9cell 
Tesla shape cavities and has been chosen for the surface 
treatment of cavities for the XFEL linac. However, it 
induces some drawbacks: the rotating seals are more 
easily prone to leaks, the cavity must be switched full of 
acid for draining and the footprint of the set-up is rather 
large. Furthermore, the removal rate in the cavity depends 

on the location of the cell [2]. To overcome these 
drawbacks, some laboratories are investigating an 
alternate process where the cavity is electro-polished in 
vertical position [3]. Cornell University has proved that 
VEP with static acid could make it possible to reach high 
gradients [4], and as VEP is suitable to the treatment of 
large elliptical cavities, we have developed at CEA-
Saclay a VEP set-up sized for surface treatment of the 
largest high beta and high gradient cavity we have 
designed, that is to say a 704 MHz cavity for the 
Superconducting Proton Linac. All other “smaller” 
cavities, as ILC cavities, fit into the set-up too. 

In this paper, this VEP set-up is described as well as 
results concerning the modeling of VEP for both high 
beta SPL [5] and ILC cavities. The acid flow and 
electrical field distribution expected during VEP will be 
discussed. 

CHARACTERISTICS OF THE SET-UP 

Generalities 
This set-up is designed to electro-polish a cavity in 

presence of circulating acid electrolyte. The expected 
flowrate range is between 5L/min and 40L/min. A 
constant voltage EP process has been chosen for the 
treatment of the cavities. The available electric power for 
the electro-polishing is 30kW (20V – 1500A). The set-up 
is divided into two distinct ventilated cabinets: The acid 
storage area and the main treatment cabinet (Figure 1). 
Insertion of the cathode into the cavity and assembly of 
connecting pieces are done on a dedicated table close to 
the set up. The cavity is then transferred in the main 
cabinet with a specific handling tool. 

The acid storage tank is located in a pit connected to 
the liquid exhaust storage area of the laboratory. The 
storage capacity is 300L. This capacity has been 
calculated in order to maintain a niobium concentration in 
the electrolyte below 10g/L after a bulk EP for SPL 
cavities. 

The cavity is filled up from the bottom by a membrane 
pump located in the pit. Once the acid reaches the 
connection tube on the top of the cavity, the acid flows to 
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the tank by gravity. The circulation of acid is 
uninterrupted when voltage is on.  Temperature of the 
acid bath is stabilized thanks to circulation of cold water 
through a Teflon heat exchanger inserted inside the acid 
tank, as shown on the flowsheet of the process on Figure 
2. 

At the end of an electro-polishing sequence, the acid is 
drained back to the tank and the cavity is rinsed with 
Ultra-Pure water. A predetermined sequence of filling 
(from the bottom)/draining of the cavities is followed by a 
continuous circulating sequence. Rinsing stops 
automatically as soon as water conductivity is low 
enough. 

All the process is automated and run through a 
touchscreen (See Figure 2). 

 
Figure 1: VEP set-up at CEA Saclay. 1: Main cabinet for 
cavity treatment. 2: Acid tank located in a pit. 3: Table for 
assembly prior to VEP. 

 

 
Figure 2: Flowsheet of the process displayed on the 
touchscreen. 

 

Safety 
Safety aspects have been carefully taken into 

consideration to design the set-up. Nitrogen is blown on 

the top of the cavity and on the top of the acid tank to 
dilute the hydrogen generated during the process and 
prevent any risk of explosion. Furthermore, the program 
of the automat includes specific procedures if sensors 
(temperature, pressure, hydrogen, flows, acid level) 
should detect any failure: 

- high temperature detected: the process is stopped 
and acid is drained, 

- insufficient nitrogen flowrate:  the current is 
stopped, 

- extraction failure: The nitrogen flowrate is stopped 
as well as the generator, 

- high level of acid detected on the top of the cavity: 
the pump stops. 

Fundamental parameters (temperature, flowrate, 
voltage) evolution is monitored on the touchscreen of the 
automat, as well as failure occurrence. A USB port allows 
an easy exportation of data. 

 

Materials 
The acid tank is coated with Teflon and piping/valves 

are made of PFA. PVDF has been chosen for some pieces 
requiring higher mechanical resistance (connections for 
the cavity, inserts for sensors). 

MODELING OF VERTICAL EP 

2D Axi-symmetry Model with COMSOL 
Multiphysics 

The described set-up makes it possible to use a wide 
range for operating parameters. (acid flowrate between 5 
and 40L/min, voltage between 0 and 20V, nitrogen 
flowrate between 0 and 50L/min, etc.). It was designed 
with R&D purpose in mind, with the view of tracking the 
optimal parameters for VEP process. A complementary 
approach consists in modeling the process using, 
COMSOL Multiphysics software which allows evaluating 
some parameters not easily accessible by experiments. 
Previously, studies (fluids, electric field, concentrations, 
thermal properties) have been carried out with different 
softwares. [6,7,8] In this paper, fluid distribution and 
electric field have been modeled for SPL and ILC cavities 
with a cylindrical cathode (30 mm diameter) shape. In a 
second step, alternative cathode shapes have been 
numerically investigated for possible improvement of the 
process. 

Contrarily to horizontal EP, VEP is a symmetrical 
process. Gravity force, represented by Fz on Figure 3. 
does not depend on radial component. It is thus possible 
to create a 2D model with symmetry according to the 
cavity z-axis (see Figure 3) which makes the calculation 
easier compared to a 3D model. 

 

Fluid Dynamics Modeling 
For the considered set-up, acid is introduced in the cavity 
through eight holes equidistant from the cathode. To 
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