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Zin  Z0

Zl  Z0 tanh( l)
Z0  Zl tanh( l)  

Since the line is shorted at its end, Zl =0, the impedance 
of the line is 

Zin  Z0 tanh(l) , and for a coaxial line we have a 

characteristic impedance Z0 given by 

Z0 

2

ln
b
a

 

 is the impedance of free space. The complex 
propagation constant is 
    j  
with the attenuation coefficient given by 

   Rs

2
a1  b1

ln
b
a

 

where Rs is the surface resistivity on the conductors,  

(=  / ~377), and the propagation constant is 

 
2
  

Resonances of the coax line (characterized by diverging 
Zin) occur at frequencies of of f=c/4l, 3c/4l, 5c/4l… etc. 
Other modes may show up in a 3-D structure. 

 
At the fundamental resonance of f=c/4l, the (real) shunt 

resistance is given (in the engineering notation) by  

Rsh 
Z0

l  
The unloaded Q and R/Q are given by 

Q 

              

Rsh / Q 
4Z0

  
The geometric factor =QRs is given by 

 QRs 
2


ln b / a 
a1 b1

 

If there is a capacitor C loading the end of the 
transmission line, the resonance condition changes such 
as the length of the transmission line is shorter, 

l  
4
 l  cZ0C

 
The frequency of the first HOM stays at 3 times the 

fundamental (for the 1-D transmission line model) even 
with the capacitive loading. The shunt resistance is 
reduced by the capacitance 

Rsh 
Z0

l
1

CZ0

l








2

1

 

The peak surface magnetic field can be estimated in 
MKS units as 

H p 
1


V

a ln
b
a

 

or in practical units 

H p 
3.3V

a ln
b
a

  

where V is in MV, H is in mT, and a in meters. 
 
The peak surface electric field is usually determined by 

the shaping of the inner conductor. However, it is bounded 
by the coaxial geometry, which gives 

 

EP 
V

a  ln(b / a)
  

 

HOM Damping 
In all the applications that will be discussed here, but 

most particularly for cavities placed in storage rings, good 
damping of HOM modes is mandatory. Given the large 
separation of the fundamental mode from all HOMs, one 
can use damping loops strongly coupled to the HOMs 
with high-pass filters to protect the fundamental power 
from overpowering the HOM load. Figure 2 shows the 
design of a HOM damping loop designed for the 56MHz 
RHIC storage cavity [3,4]. The cavity will have four 
dampers at various locations to couple well to all the 
HOMs that matter for beam stability. 

 

 
 

Figure 2: A HOM damper with an integral high-pass 
filter.  

 
The high-pass filter design of this HOM damper uses 

the frequency gap between the fundamental mode and the 
lowest HOM mode to ramp up over 80dB of attenuation 
of the fundamental mode, while allowing good damping 
of the HOMs. The filter consists of niobium-sapphire 
layers forming three capacitors and four line inductors, 
shown at the left end of the damper assembly. The warm 
HOM load is connected through the coax line shown at 
the top of the figure.  The cavity vacuum is separated 
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from the cryogenic insulation vacuum by a sapphire 
window. 

Other properties 
It is worth mentioning a few other properties of the 

QWR that are relevant to SRF operations. First, acoustic 
stability: Due to the symmetry of the electrodes (leading 
to a zero frequency deviation from motion of the inner 
conductor relative to the outer conductor in first order), 
the resonator is intrinsically very stable against 
mechanical vibrations.  

The first mechanical resonant frequency of the niobium 
QWR center conductor, f, is given approximately by 

f  0.28
Ea2

l5
 where E is Young’s modulus and  is 

the density. For niobium, E~120 GPa, =8570 kg/m3. 
That will place most QWR’s center conductor mechanical 
frequency at over 100 Hz, and this is for low frequency 
cavities. At high frequency the QWR is much stiffer. 

The QWR can also be made very stiff to helium 
pressure changes. For example, in the BNL 56 MHz QWR 
has a helium pressure frequency detuning of only 0.3 
Hz/mbar. In comparison, a 5-cell 704 MHz elliptical 
cavity has 26 Hz/mbar. Even if one considers a fractional 
frequency detuning by pressure, the QWR outperforms 
the elliptical cavity by almost an order of magnitude. 
Given that the helium pressure fluctuations are considered 
the worst detuning mechanism of SRF cavities, this is a 
significant advantage for the QWR.  

Another important property is sensitivity to 
multipacting. In a very large number of resonators across 
the world, QWR were found easy to condition through 
multipacting. For the special applications when 
multipacting must be avoided altogether, a QWR design 
that is very resistant to multipacting has been developed 
[5].  

QWR APPLICATIONS 

Crab Cavities for eRHIC and LHC 
One of the most vexing problems in the design of a 

deflecting or crab cavity is the damping of various modes 
such as the Lower Order Mode (LOM, the accelerating 
mode in an elliptical cavity has a lower frequency than the 
deflecting cavity), Same Order Mode (SOM, the other 
polarization of the deflecting mode) and the usual 
assortment of Higher Order Modes (HOM). The QWR 
crab cavity [6] has an enormous advantage relative to any 
other cavity: It has no LOM and no SOM, and the lowest 
frequency HOM is separated by a large factor (a factor of 
3 in the fundamental QWR, but usually less than 3 
depending on the exact geometry) whereas elliptical 
cavities have an HOM as close as 15% to the 
fundamental. This makes the complex task of damping 
modes much easier in the QWR.  

Making a somewhat crude approximation that the 
deflection voltage is established by the electric field 

across the gap g for a distance of 2a (see Figure 1 for 
definitions), then the QWR crabbing voltage is related to 
the resonator’s voltage by  

Vcrab 
a
g

V   

This voltage is a limit that is never reached, due to the 
curvature of the field.  

From this expression we also get for the transverse 
(crabbing) shunt impedance 

Rt

Q
 a

g










2
Rsh

Q
 4a2Z0

g2

 
One feature of the QWR as a crab cavity is the 

acceleration that may be imparted to the beam even in the 
crabbing phase. While it is possible to design the QWR 
crab cavity to avoid this acceleration (as will be shown 
below), a small degree of acceleration (or deceleration) 
may be easy to accommodate, either by providing the 
necessary power by the RF system, or even use pair of 
QWR crab cavities, one which will produce acceleration, 
the other to produce deceleration (by flipping the cavity 
180 degrees about the beam axis) and feed the power 
from the decelerating cavity to the accelerating cavity and 
canceling the acceleration for the pair. 

LHC: Given that the LHC is operating at the beam-
beam limit, an essential component of the luminosity 
upgrade of the LHC is foreseen as a combination of bunch 
intensity increase, requiring increased crossing angle, and 
a reduction of β� with a simultaneous compensation of 
Piwinski angle using crab cavities [7]. The crab cavities 
recover the geometrical luminosity loss from increasing 
crossing angle. They also provide a natural luminosity-
leveling knob to maintain a constant luminosity during a 
physics store and substantially reduce the radiation 
damage of IR region magnets and detectors. 

A number of crab cavity styles have been studied by the 
LHC Crab Cavity Collaboration. The main challenge in 
fitting a crab cavity to the LHC is the combination of 
relatively low frequency (about 400 MHz) and severe size 
limitations. The size limitation stems from the separation 
of the LHC beam lines, which is 194 mm center-to-center. 
This makes a compact cavity essential for the LHC. 

A design of a QWR crab cavity for the LHC luminosity 
upgrade has been made by Rama Calaga [8]. The cavity is 
shown in Figure 3. 

The racetrack design of this cavity makes it extremely 
compact while retaining a good performance. This cavity 
has a frequency of 400 MHz, and the nearest other mode 
is well separated at 675 MHz. Even though it is still un-
optimized, it already achieves a transverse voltage of 2.5 
MV per cavity with a peak surface magnetic field of 110 
mT and peak surface electric field of 48 MV/m, and a 
transverse shunt impedance Rt/Q of 132 Ohms. However, 
this design still needs to be optimized to reduce a non-
negligible accelerating voltage. 
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