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Abstract 
SRF cavity design requires the integration of several 

different software and analytic tools to produce a cavity 
which, after production and cool down to liquid helium 
temperatures, has the correct resonant frequency.  We 
describe a ‘map’ which starts with a cold cavity at the 
correct frequency and moves back through the series of 
production steps producing an expected resonant 
frequency at each step.  For example, contributions to 
cavity deformation from vacuum and tuner loading are 
modeled in ANSYS and a piecewise linear fit is produced 
which is re-inserted into the SUPERFISH[1] model to 
determine the new resonance point.  We describe the 
steps and calculations used to develop the frequency map 
for the Wisconsin SRF electron gun and the specific 
initial cavity geometry. 

INTRODUCTION 
In order to use a superconducting rf cavity in a particle 

acceleration system, it is necessary to synchronize its 
resonant frequency to other accelerator systems; e.g. the 
photocathode drive laser.  To do that the cavity itself must 
have its mechanical dimensions adjusted such that its 
resonance is an integer harmonic of all other accelerator 
systems.  It must resonate at that exact frequency in order 
to accelerate particles correctly.  Fortunately, modern 
electromagnetic design codes allow the resonant 
frequencies of cavities to be calculated very accurately.  
For superconducting cavities there are additional 
complications due to the mechanical deformations which 
occur due to evacuation and cool down to cryogenic 
operating temperatures.  This problem is mitigated 
somewhat by the inclusion of an active tuner on the cavity 
with several bandwidths of range, but calculations of the 
effects on the mechanical dimensions as the cavity is 
taken through production and processing must be done in 
order to ensure the cavity has the correct frequency when 
completed.  In addition, multiple resonance and 
dimensional measurements are made throughout the 
production process to verify the calculations, particularly 
on a first article. 

The SRF electron gun being produced by the 
University of Wisconsin (UW) is a single cavity device 
with a unique geometry and frequency.  As such, it is 
subject to all of the limitations stated above.  It does enjoy 
the benefit of being a single cell, quarter wave resonator, 
design.  This simplifies the problem since only the 
mechanical dimensions of a single cell need to be 
considered; the effect of shrinkage or stresses on adjacent 

cells can be ignored, and its frequency can be adjusted 
prior to the final cavity weld by trimming its length. 
However, only a single article will be produced and so the 
analysis to determine that length and frequency is very 
important.  To better understand  how each fabrication 
step effects the frequency of the cavity and to allow 
correction in subsequent cavities fabricated, each event in 
the cavity fabrication process is analyzed separately for 
dimensional and frequency effects.  By starting with the 
dimensions of the final, finished cavity and applying these 
corrections a frequency map[2] leading from the desired 
finished state to the initial, prior to final weld, state can be 
produced.  As the cavity is manufactured, actual 
measurement data is recorded and can be used to improve 
the corrections at each step, leading to a cavity with a 
frequency very close to the design goal.  

ELECTROMAGNETIC SOLUTION AND 
CONVERSION TO MECHANICAL 

DESIGN  
The initial electromagnetic solution for the UW gun 
was generated using Superfish[1] .   

 
Figure 1: Electromagnetic design showing resonant 
frequency and final cavity dimensions. 

Figure 1 shows the electric field pattern and resonant 
frequency of the cavity.  The cavity shape was optimized 
to minimize the ratio of Epk / Eacc and the maximum 
magnetic field[3].  The mesh used was constrained to 50 
microns in the cathode region to minimize errors due to 
the small structures and radii. 

To convert the internal dimensions of an idealized 
cavity into a realistic mechanical structure one has to 
assume a particular fabrication process.  Except for the 
cathode nose cone region that will be machined from a 
niobium ingot, most of the cavity will be fabricated from 
niobium sheet that has been rolled or deep drawn into 
various shapes that eventually are e-beam welded 
together.   4 mm thick niobium sheet is generally regarded 
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