Review of Results from Temperature Mapping and Subsequent Cavity Inspections

Wolf-Dietrich Möller DESY, Hamburg, Germany SRF09

- 1. Quench locating systems
- 2. Visual inspection systems
- 3. Defect investigation methods
- 4. Examples of defect investigations
 - 4.1. DESY
 - 4.2. Cornell University
 - 4.3. Fermilab
 - 4.4. KEK
- 5. Conclusion

1. Quench locating systems

In a 4K (sub cooled) He bath:

- carbon composition resistors
- rotating and fixed T-maps are in use for a long time

In a 2 K He bath:

- better insulation against the super fluid Helium is necessary
- fixed and rotating systems

T. Junquera, A. Caruette, M. Fouaidy, IPN (CNRS - IN2P3) Orsay, France

Sept. 22nd, 2009, 14th International Conference on RF Superconductivity, Berlin W. – D. Möller, DESY, Hamburg, Germany

H. Piehl, Iniversity of Wuppertal, SRF Workshop, Karlruhe 1980

Jens Knobloch, Henry Muller, and Hasan Padamsee Floyd R. Newman Laboratory of Nuclear Studies Cornell University, Ithaca, N.Y. 14853

1. Quench locating systems, cont.

- Development of a diode based
 T-map system at Fermilab
- New acoustic defect location system developed at Cornell (localization by time of arrival calculations)

oscillating superleak transducer

Sept. 22nd, 2009, 14th International Conference on RF Superconductivity, Berlin W. – D. Möller, DESY, Hamburg, Germany

2. Visual inspection systems

- borescope
 - resolution: >0.1 mm
- long distance microscope (Cornell)
 - resolution: 12 µm/pixel (limited by camera)
- University Kyoto and KEK camera system
 - resolution: 7 µm/pixel
 - variable light system for height measurement

borescope

same location inspected with new KYOTO camera system

ELMHOLTZ

3. Defect investigation methods

samples have to be cut out of the cavity

- shape •
 - optical microscope
 - resolution: > 1 <u>µm</u> •
 - <u>3D microscope</u>
 - replication and profilometer
 - SEM
 - resolution: few nm
- composition
 - EDX
 - Auger

4.1. Results from DESY, particle

Cell 1, Quench at 16 MV/m at slope

Many spots are detected in the area of the quench.

Sept. 22nd, 2009, 14th International Conference on RF Superconductivity, Berlin W. – D. Möller, DESY, Hamburg, Germany

4.1. Results from DESY, holes and pits

Cell 6, Quench at 16 MV/m on equator

- Auger analysis: no foreign material
- EDX analysis: increased content of carbon in black spots

4.1. Results from DESY, hole and bump

Cell 5, Quench at 23 MV/m on equator

3D image, bump and hole up to 200 µm deep

Sept. 22nd, 2009, 14th International Conference on RF Superconductivity, Berlin W. - D. Möller, DESY, Hamburg, Germany

Poster :TUPPO073 Singer W., Singer X. et al

Nh

SEM

EHT = 20.00 KV Heraeus

ELMHOLTZ

4.2. Results from Cornell University, pits

T-Map System and SEM Results (TUPPO049)

- many interesting details with SEM
- These details do not show up with optical inspection.
- Optical inspection can only serve as a rough, but useful, guide

Same pit-defect, SEM images taken from different angles

Zack Conway at all, Cornell University

500 un

4.2. Results from Cornell University, pits cont.

Example pits found with acoustic defect location system (TUOAAU05)

8 superleak transducers used

Sept. 22nd, 2009, 14th International Conference on RF Superconductivity, Berlin W. – D. Möller, DESY, Hamburg, Germany

Zack Conway at all, Cornell University

ELMHOLTZ

4.3. Results from Fermilab, pits

Single Cell, quench at 39 MV/m

see Genfa's talk on Thursday THOBAU03

Diode T-map

Camera inspection

11

Sept. 22nd, 2009, 14th International Conference on RF Superconductivity, Berlin W. – D. Möller, DESY, Hamburg, Germany

4.4. Results from KEK, pits and bumps in MHI - cavities

- intensive inspection on two cavities near (±15mm) and on equator weld (with Kyoto camera)
 - before dumbbell welding
 - cavity as received
 - after pre EP
 - after 100 m EP
 - after annealing
 - after final EP
 - after vert. test + T-map
- many suspicious spots were found before second EP typical
- typical pits:
 - diameter: 200 500 μm
 - depth: 10 30 µm
- typical bumps:
 - diameter: 800 µm
 - height: 50 µm

'The spots were observed on the surface even in the dumbbells stage.''However, heating at similar spots is not detected in the V.T. for MHI-05 and MHI-06'

Example:

K. Watanabe at. all. Recent Results of Cavity Inspection for the SC Cavity at KEK-STF, PAC09,

ELMHOLTZ

13

HELMHOLTZ

4.4. Results from KEK, welding seams, MHI-06

Quench location investigations:

- "The observed suspicious spots (...) are not reason of limitation of cavity performance at this moment."
- heating area at 33 MV/m was 304° 350°
 - a non-uniform weld seam was found

Heating area #6 cell equator : 270° ~ 360° : Sensor 300° ∠T=10 K, 330° ∠T=10 K, 350° ∠T=8 K

more in Ken's talk TUOBAU01

Defect size and achievable gradient

Zack Conway, Cornell:

 'At accelerating gradients above ~30 MV/m I cannot find the defects with long-distance optical microscopy. Below ~30 MV/m, I find defects at the quench-spot 95% of the time with long-distance optical microscopy.'

Ken Watanabe, KEK:

- 'The heating at the suspicious spots was not detected by T-map.'
- 'Heating locations at accelerating mode were inspected, but there were no visible defect.'

more next talk: David Meidlinger TUOAAU05

Fig.2: Calculated breakdown field for RRR=525, RRR=270 and RRR=40. The analytical Hq~1/¦d is shown as comparison.

THERMAL MODEL CALCULATIONS FOR 1.3 GHZ TTF ACCELERATOR CAVITIES, Detlef Reschke

Summary and Conclusion

- Big improvement in Cavity fabrication and treatment
 - less foreign materials found (at limitations <20MV/m only)
- New visual inspection systems are available (Kyoto/KEK)
- Long distance microscope with the same resolution
 - much improved resolution: about 10 µm/pixel depending from camera
- Many irregularities in the cavity surface are found with this systems during and after fabrication and treatment
 - pits and bumps
 - weld irregularities
- Some correlations are found with quench limitations at higher fields
 - But often no correlation between suspicious pits and bumps and quench location
- At gradient limitations in the range >30 MV/m defects are often not identified
- Investigations are necessary for
 - classification of defects
 - what causes the defects → intensive inspections at different fabrication and processing states are done at KEK

Thank you for providing me with the information and the material:

Zachary Conway and his team at Cornell University Xenia and Waldemar Singer, Sebastian Aderholt at DESY Ken Watanabe and his team at KEK Genfa Wu and his team at Fermilab

I was not able to include all the work done at the different institutes. There is much more interesting and important work done – see the next talks.

