High field Q-slope and the baking effect

Gianluigi Ciovati Jefferson Lab

14th International Conference on RF Superconductivity

Sept. 20th-25th, 2009, Berlin, Germany

Thomas Jefferson National Accelerator Facility

Outline

- Q-drop and baking effect: the essential facts
- Models to describe the cavity excitation curves
- "Oxygen pollution" model: new results against it
- Hot-spots due to magnetic vortices
- Recent results on Nb sample measurements
- New results on cavity heat treatments
- Conclusions

Q-drop and baking effect: essential facts

- Q-drop non-uniform hot-spots due to high surface magnetic field
- Low-temperature (120 °C) baking reduced intensity of the hot-spots, higher Q maintained at higher field
 - Its effectiveness depends on the material/processing combination

Models to describe the cavity excitation curves

Thomas Jefferson National Accelerator Facility

Gurevich model

• The effect of "defects" with reduced superconducting parameters is included in the calculation of the cavity R_s

• This non-linear R_s is used in the heat balance equation

$$u(\theta) = \theta e^{1-\theta}$$
$$\frac{2B_p^2}{B_{b0}^2} = 1 + g + u(\theta) - \sqrt{\left[1 + g + u(\theta)\right]^2 - 4u(\theta)}$$

$$Q_{0}(B_{p}) = \frac{Q_{0}(0)e^{-\theta}}{1 + g/\left[1 - (B_{p}/B_{b0})^{2}\right]}$$

Fit parameters:

g related to the No. and intensity of hot-spots

 $Q_0(0)$ low-field Q_0

 B_{b0} quench field

A. Gurevich, Physica C 441 (2006) 38

Thomas Jefferson National Accelerator Facility

Weingarten model

- n_{s0} defects per unit volume at the Nb surface with lower critical field (B₀)
 << B_{c1}(Nb)
- The size of the nc region increases with field, above B_0

$$R_{s}^{nl}(B_{p}) = \frac{4}{3}\pi\mu_{0}\lambda^{3}fn_{s0}\left\{\left(\frac{B_{0}}{B_{p}}\right)^{2} + \frac{1}{2}\left(\frac{B_{p}}{B_{c}}\right)^{2}\left[1 + \frac{2}{3}\kappa^{2}\left(\frac{B_{p}}{B_{c}}\right)^{2}\left(1 + \frac{3}{4}\kappa^{2}\left(\frac{B_{p}}{B_{c}}\right)^{2} \cdots\right)\right]\right\}$$

Low-field Q-increase Medium and high-field Q-slopes

Fit parameters: n_{s0} , B_0 , R_{res} , κ (Ginzbug-Landau parameter)

W. Weingarten, SRF'07, TuP16

Thomas Jefferson National Accelerator Facility

Poster TUPPO052

Models comparison with data

Data from: G. Ciovati, J. Appl. Phys. 96 (2004) 1591.

Both models give good agreement with experimental data

Thomas Jefferson National Accelerator Facility

What are the "defects" invoked by both models?

Thomas Jefferson National Accelerator Facility

"Oxygen pollution" model

- Surface analysis of Nb samples shows high concentrations of interstitial oxygen (up to ~ 10 at.%) at the Nb/oxide interface
- Interstitial oxygen reduces T_c and the H_{c1}

Magnetic vortices enter the surface at the reduced H_{c1} , their viscous motion dissipating energy

• The calculated O diffusion length at $120^{\circ}C/48h$ is ~ 40 nm

Interstitial oxygen is diluted during the 120° C baking, restoring the H_{c1} value for pure Nb

baking

Oxide cluster

Oxygen concentration (at. %)

1.2

0.8

0.6

0.4

0.2

100

G. Ciovati, Appl. Phys. Lett. 89 (2006) 022507

120

140

T (°C)

160

180

200

Thomas Jefferson National Accelerator Facility

Calculated oxygen concentration at

function of temperature after 48h

а

the metal/oxide interface as

Oxygen pollution model: shortcomings

The model cannot explain the following experimental results:

- The Q-drop did not improve after 400°C/2h "in-situ" baking, while O diffuses beyond λ^1
- The Q-drop was not restored in a baked cavity after additional baking in 1 atm of pure oxygen, while higher O concentration was established at the metal/oxide interface²
- Surface analysis of single-crystal Nb samples by X-ray scattering revealed very limited O diffusion after baking at 145°C/5h³

¹ G. Eremeev, Ph.D. Dissertation, Cornell University, 2008

² G. Ciovati, P. Kneisel and A. Gurevich, *Phys. Rev. STAB* **10** (2007) 062002

³ M. Delheusy, Ph.D. Dissertation, University of Paris-Sud IX, 2008

Thomas Jefferson National Accelerator Facility

Magnetic vortices as sources of "hot-spots"

Theoretical calculations show that:

- Oscillation of magnetic vortices, pinned near the Nb surface during cool-down across $T_{c,}$ cause localized heating
- Periodic motion of vortices pushed in & out of the Nb surface by strong RF field also cause localized heating

A. Gurevich and G. Ciovati, Phys. Rev. B77 (2008) 104501

Thomas Jefferson National Accelerator Facility

High-field losses due to vortices

The local dissipated power is different in the case of isolated vortices vs. nearly-spaced vortices

Local dissipation due to vortex motion produces a long-range hot-spot

A. Gurevich and G. Ciovati, Phys. Rev. B 77 (2008) 104501

Thomas Jefferson National Accelerator Facility

Eliminating vortex hotspots by thermal gradients

- Thermal force acting on the vortex: $f_T = -s^*(T)\nabla T$, $s^* = -\phi_0 \frac{\partial H_{c1}}{\partial T}$
- The condition $f_{\rm T} > J_{\rm c} \Phi_{\rm o}$ gives the critical gradient which can depin vortices:

$$\left|\nabla T\right|_{c} = \frac{J_{c}}{\left|\partial H_{c1}/\partial T\right|} \cong \frac{J_{c}\mu_{0}T_{c}^{2}}{2B_{c1}T}$$

Taking $B_{c1} = 0.17T$, $J_c = 1kA/cm^2$ and T = 2 K for clean Nb yields $|\nabla T|_c \approx 1.5 K/mm$

Vortices in Nb may be moved by moderate thermal gradients

Any change of thermal maps after applying local heaters indicate that some of the hot-spots are due to pinned vortices

A. Gurevich, talk TU104 at SRF'07 Workshop, http://web5.pku.edu.cn/srf2007/home.html

Thomas Jefferson National Accelerator Facility

Experimental results

What we learned from the experiments

- Small No. of heaters, small area of the cavity surface is affected
- Heat supplied was marginally sufficient to displace vortices (estimated 1.5 K/mm at 2 K, only applied 0.5 K/mm)

No drastic change in Q₀(B_p) performance
Changes in T-maps indicate re-distribution of vortices over larger area

A stronger thermal gradient directed outward could push vortices deeper into the bulk

Thomas Jefferson National Accelerator Facility

Local laser heating to move pinned vortices

ANSYS Simulation done by G. Cheng

- Hot-spots will be identified by an array of thermometers on flat plate
- Laser will be scanned over hot-spot locations to push pinned vortices into the bulk
- Laser Scanning Microscopy to identify "lossy" regions with µm-space resolution can be done "in-situ" with the same apparatus

Thomas Jefferson National Accelerator Facility

Microwave Studio simulation done by J. Mondal

• By now, I may have convinced you that a plausible cause of the hot-spots are magnetic vortices...

What impurities or defects in Nb pin vortices or favors their entry into the surface?

Recent results on Nb sample measurements...

Thomas Jefferson National Accelerator Facility

Surface analysis of "hot-spot" samples

Samples from regions of high and low RF losses were cut from single cell cavities and examined with a variety of surface analytical methods.

No differences were found in terms of:

- roughness
- oxide structure
- crystalline orientation

It was found that "hot-spot" samples have a higher density of crystal defects (i.e. vacancies, dislocations) than "cold" samples

A. Romanenko, Ph.D. Dissertation, Cornell University, 2009

Thomas Jefferson National Accelerator Facility

G. Ciovati, *High field Q-slope and the baking effect*, SRF'09, Berlin, Sept. 20th-25th, 2009

ċ∘

Possible role of surface Hydrogen

• High concentration of interstitial H has been measured at the metal/oxide interface of Nb samples after BCP treatment and is reduced by the low temperature baking

G. Ciovati, J. Appl. Phys. 96 (2004) 1591.

• Thermal desorption studies showed two hydrogen desorption peaks at 130 °C and 198 °C, interpreted as hydrogen desorption from surface and subsurface sites¹

- Measurements by Positron Annihilation Spectroscopy (PAS) show that the defect density (vacancies) increases with hydrogen concentration in Nb samples²
- Hydrogen affects the magnetic behavior of Nb by lowering the magnetic susceptibility for increasing H concentration³

¹A.L. Cabrera and J. Espinosa-Gangas, J. Material Research **17** (2002) 2698.

²J. Cizek et al., Phys. Rev. B 69 (2004) 224106

³U. Kobler and J.-M. Welter, J. Less Common Metals **84** (1982) 225.

Thomas Jefferson National Accelerator Facility

Passivation of the Nb surface

How can we improve the Nb surface to reduce pinning and maintain a high surface barrier to flux penetration?

- Heat-treat the cavity under vacuum at high temperature (≥ 800°C, ~3h) to reduce lattice defects, hydrogen content and oxide layer thickness
- Passivate the Nb surface by growing a thin nitride layer (~10nm thick) at an intermediate temperature (~400°C) to prevent re-absorption of hydrogen and oxygen during cool-down and water rinses
- The low-temperature baking can be easily added to the process
- Do not apply any chemical etching afterwards!

This concept had been discussed already in 1971 (P. B. Wilson, "Theory and suggested experimental procedure for the production of a nitride layer on niobium", SLAC-TN-71-7, (1971)

Heat treatment process

- 800°C/3h, admit N_2 (10⁻⁵ mbar) at 400°C/20min, cooldown
- Nb samples were treated with the cavities and depth profiling of the impurities was done at NCSU

No nitride layer was formed 2 orders of magnitude lower hydrogen content

Thomas Jefferson National Accelerator Facility

Initial results

- Although we were unable to produce the thin nitride layer in the present "production" furnace an improvement of the Q_0 (~40%) and $B_{p,onset}$ (~15%) was achieved.
- A new "cleaner", more flexible furnace is currently being developed to fully explore the possible advantages of Nb surface passivation

Thomas Jefferson National Accelerator Facility

Conclusions

- Cavity $Q_0(B_p)$ curves are well described by models considering anomalous losses due to defects of "general" nature
- Theoretical calculations and initial experiments suggest that hot-spots are related to magnetic vortices
 - New experiments with local laser heating are planned to confirm this
- Not clear which impurity/defect favors vortex pinning/entry
 - Hydrogen induced vacancy clusters?
 - Cavity surface passivation to reduce surface defects and impurities will be explored with a new furnace

Acknowledgements

Thanks to my collaborators:

G. Myneni, P. Kneisel, K. Jordan, *Jefferson Lab*A. Gurevich, *Florida State University*F. Stevie, *North Carolina State University*S. Anlage, *University of Maryland*

THANK YOU FOR YOUR ATTENTION

Thomas Jefferson National Accelerator Facility

