

SPIRAL 2 CRYOMODULES TEST RESULTS AND STATUS

Guillaume OLRY - IPN ORSAY On behalf of cryomodules A and B teams

OUTLINE

- SPIRAL2 Linac layout & parameters
- Cryomodule A and B tests
 - Cryogenic losses
 - Power coupler & cavity performances
 - Tuning system
- Production status
 - Cryostats
 - Cavities
 - Power couplers

SC LINAC

Beta 0.07 energy section

Beta 0.12 energy section

L~35 m

Cryomodule A	Cryomodule B	Power coupler
CEA Saclay	IPN Orsay	LPSC Grenoble

Cryomodule	Α	В
Valve-to-valve length [mm]	610	1360
# cavities	12	14
f [MHz]	88.05	88.05
β_{opt}	0.07	0.12
Epk/Ea	5.36	4.76
Bpk/Ea [mT/MV/m]	8.70	9.35
r/Q [Ω]	599	515
Vacc @ 6.5 MV/m & β_{opt}	1.55	2.66
Lacc [m]	0.24	0.41
Beam tube \emptyset [mm]	38	44

Cryomodule A

<u>Specifications:</u> • T = 4.5 K • E_{acc} =6.5MV/m & P_{cav} < 7W

Cryomodule static losses < 8.5 W
P_{coupler} = 10kW max

Cool down

- Thermal shield cooled down first during 1 day
- Cavity cool down $250K \rightarrow 4K$: < 1 hour (excepted cavity bottom)
- Tuning system: T_{final} = 20K within 4 days
- Static losses: 6.5 W (SPIRAL2 specs <8.5W)</p>
- Losses during continuous LHe transfer losses (w/o RF): 35 W

Cavity bottom at ~15 K

RF performances

- Power coupler conditioned up to 10 kW CW at 300K and 4K
- Multipacting barriers at 4, 26, 131 and 220 W (passed but not processed)
- External Q: 5.3 10⁵ (calculated: 5.5 10⁵)
- Cavity AZ1 with low $Q_0 \rightarrow 35W @ 6.5 \text{ MV/m}$
- Eacc max = 10.3 MV/m at low duty cycle (5 Hz). $P_{cav} > 70 W$

Tuning system

Push-pull tuning system

- Tuning system in contact before cool down → -5 kHz (SS shrinkage) ⇒ Shifted away (1.3 mm) from the cavity
- good linearity: 0.15 Hz/motor step
- Sensitivity: ~28 kHz/mm (25 kHz/mm calculated)
- Small backlash
- Tested over 10kHz amplitude (full range: +25 kHz)

Cryomodule B

Cool down

- Thermal shield cooled down first: $300K \rightarrow 80K$ in 10h
- Cavities cool down $250K \rightarrow 4K$: < 5h (~1h between 150K an 50K)
- He bath pressure variation: +/- 2 mbar
- Static losses: 16 W (SPIRAL2 specs <11W) → extra heat load from couplers + bad contacts on copper thermal shield</p>
- Losses during continuous LHe transfer (w/o RF): 32 W

RF performances

- Power coupler conditioned up to 10 kW CW at 300K and 4K
- Multipacting barriers & vacuum deterioration only up to 150W
- Eacc max = 7 MV/m & 8 MV/m (~9 MV/m in vertical cryostat)
 → tuning system with SC plunger (chemical treatment of only 20 µm → defect → quench)

Tuning system

Nb plunger

- Coarse tuning: introducing the plunger \Rightarrow from +20kHz to +50kHz
- Fine tuning: moving the plunger (+/- 4mm)
 - Sensitivity: ~1 kHz/mm (1.15 kHz/mm calculated)
 - Good linearity: 0.12 Hz/motor step
- Small backlash (70Hz)
- Compensation up to ΔP =30mbar and variation rate of 0.4 mbar/s

Status on components production

Cryomodule A

- Fabrication started in June 2009 (11 cryostats)
- First cryostat delivered in January 2010
- Cryostats #2-#10 : from July to December 2010 (3 batches)

Cavities A

- Fabrication in 2 phases (2 +10 cavities) started in June 2008
- The first two cavities (AZ2 & AS3) tested and validated this year
- 10 remaining cavities between May and July 2010

Status on components production (con't)

Cryomodule B

- Fabrication started in March 2009 (6 cryostats)
- First cryostat in November 2009
- Oryostats #2-#5 every 2 months

Cavities B

- 10 cavities delivered
- o 7 cavities tested and validated
- 1 cavity repairing: frequency too high → local chemistry in H field area
- 6 more cavities in October/November 2009

Status on components production (con't)

Power couplers

- Fabrication of 30 couplers started in September 2008
- First batch (5 couplers) delivered and tested
 - 2 TiN coating (30nm): break at 4kW & 7kW
 - I TiN coating (1nm): ok up to 35kW
 - 2 non-coating: ok up to 35kW
- 2nd batch of 5 couplers (non-coated) in October 2009
- End of conditioning: mid-2011

Thank you

Pierre Bosland (CEA)
Yolanda Gomez-Martinez (LPSC)