

... for a brighter future

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by The University of Chicago

The ATLAS Energy Upgrade Cryomodule

Joel D. Fuerst

Physics Division 21SEP09

SRF2009 MOOCAU04

Introduction

- A new cryomodule containing 7 β=0.15 quarter-wave cavities is now operating with beam in the ATLAS heavy ion linac, increasing energy by 30-40%.
- This represents the first successful demonstration of separate cavity and insulating vacuum systems for a low-β cryomodule.
- Maximum voltages of 3.75 MV per cavity have been achieved.
 ~1 MV/cavity is today's state-ofthe-art for operations.

Features

- Optimized electromagnetic and structural design of the cavities
- Cancellation of beam steering effect due to the RF field in the QWR
- State-of-the-art surface processing, cleanroom assembly, low-particulate pumping and venting systems (THPP0029)
- Top-loaded cryomodule design which minimizes components involved in clean assembly

Section View

7 cavities installed

Beam valves pass through angled endwalls of box

Cavity Parameters

Frequency	109.125	MHz
beta	0.15	
U ₀	37*	J
Active length	25	cm
E _{PEAK}	48*	MV/m
B _{PEAK}	88*	mT
G	40	Ohm
R _{sh} /Q	548	Ohm

*at 3.75 MV/cavity = 15 MV/m

Accelerating Fields

15 MV/m achieved on-line in 2 cavities:

- V_{MAX} = 3.75 MV, E_{PEAK} = 48 MV/m, B_{PEAK} = 88 mT

Tuners & Microphonics

Measured cavity microphonics – simultaneous

Slow Tuner Range

Beam-Based Performance Data

- Accelerate Carbon +6 beam through the cryomodule
- Measure beam energy via time-of-flight
- Use TRACK code to fit accelerating voltage to TOF data
- Power dissipation to LHe measured at the refrigerator (dynamic load):
 - **55W** at 14.5 MV ($Q = 1.0 \times 10^9$)

Cavity	Beam	Cavity
Number	Energy	Voltage
	[MeV]	[MV]
1	174.0	1.96
2	184.5	1.89
3	196.1	2.13
4	208.5	2.29
5	219.7	2.12
6	229.9	1.92
7	241.5	2.24
Total voltage		14.5

Maximizing Performance

- VCX fast tuner is 30-year old technology
- VCX limit = 2.3 MV/cavity (avg.)
- Cavity performance has outstripped VCX capability
- VCX will not be part of future designs
- Performance increase possible:
 - Low measured microphonics
 - Reduce VCX tuning window

Cavity	Cavity	Max.
Number	Voltage	Achievable
	[MV]	Voltage [MV]
1	1.96	2.88
2	1.89	2.75
3	2.13	3.75
4	2.29	3.13
5	2.12	2.75
6	1.92	2.08
7	2.24	3.75
Total voltage	14.5	21.1

RF System

- 109 MHz, 250 W solid-state water-cooled amplifiers + LLRF for 8 cavities in 1 rack
- I&Q type LLRF controller has the following feedback loops:
 - frequency use slow tuner
 - amplitude adjust input drive power
 - phase use VCX
- Slow and Fast tuner controllers
- Voltage pulsers are used to switch VCX diodes

Cavity Fabrication

hydroforming

- Die hydroformed RRR300 niobium
- Conventional machining/wire EDM
- EBW, electropolish, flash BCP
- HPWR, clean handling

Wire EDM

flash BCP

electron beam welding

(THPPO066)

String Assembly (inside clean room)

- Cavities pre-assembled w/coupler & VCX
- Cavity assemblies installed on support frame
- Inter-cavity bellows & vacuum manifold installed
- Beam valve spools installed
- 2 people, 1 month to complete

Final Assembly (external to clean room)

clean cavity string

dressed string suspended from lid

module closure

Alignment

Tolerances not critical for ATLAS

Installation alignment in the tunnel: ± 0.5 mm

- Alignment crosshairs referenced to beam centerline
- Viewports on vacuum vessel endwalls
- Check with beam: no observed losses

Cooldown

LHe:

- Cavities
- Solenoid
- 15W static

LN2:

- Thermal shield
- Coupler intercepts
- Beam valve intercepts
- VCX fast tuners
- 200W static

Summary

- Represents the first full implementation of clean techniques for low-β cavities
- Provides a factor 3 performance gain over existing ATLAS technology
- Cryomodule design is a strong basis for next generation ion linacs
- Further developments will maximize the potential of state-of-the-art QWRs
 - TUPPO016

