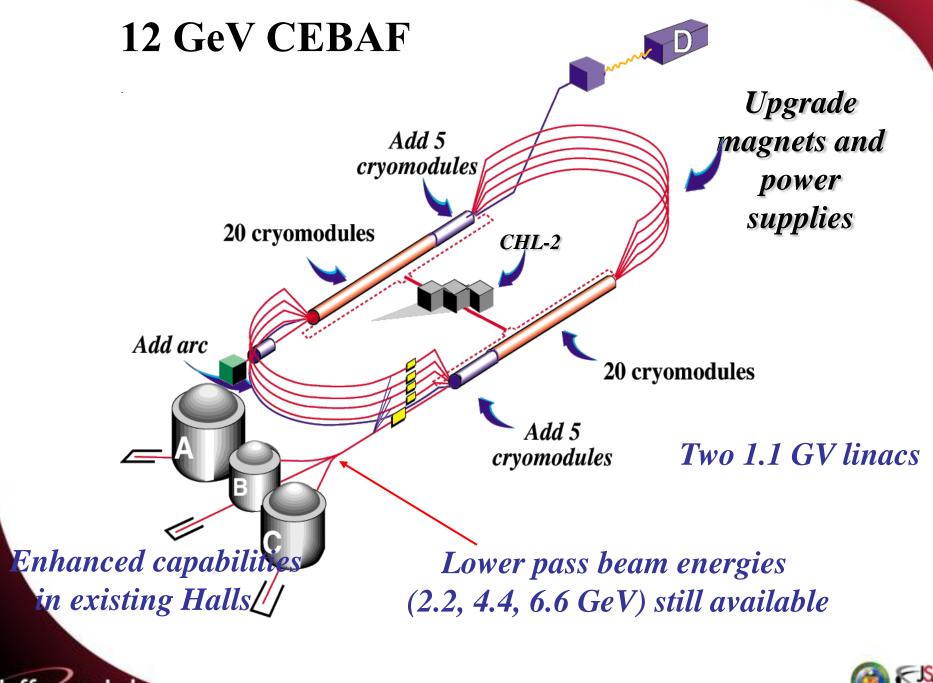
Thomas Jefferson National Accelerator Facility

UPGRADE AND HIGH CURRENT CAVITY DEVELOPMENTS

Joseph Preble for the Jefferson Lab Institute of SRF Science and Technology And Mechanical Engineering Group

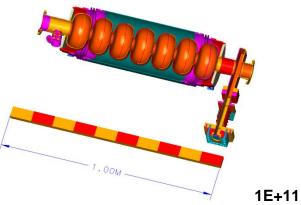


Outline

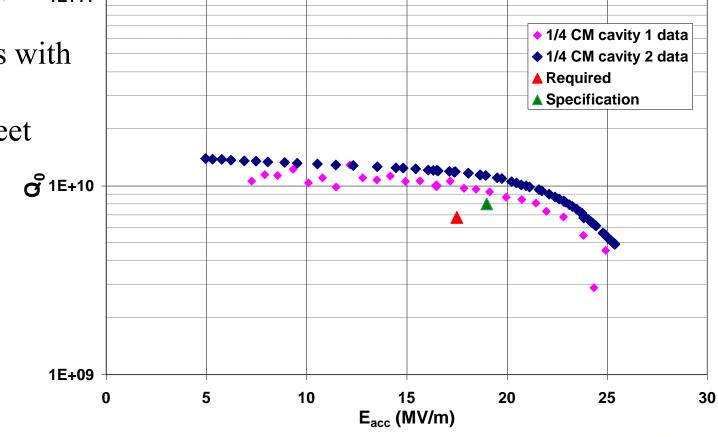
- Jefferson Lab CEBAF Upgrade
 - Cryomodule/Cavity Requirements
 - Cavity Solution
 - Cavity Performance
 - HOM Issues
 - Future Activities
- Jefferson Lab High Current Program
 - Background

- Cryomodule Concept
- Cavity and Critical Component Status
- Future Activities

Requirements Overview

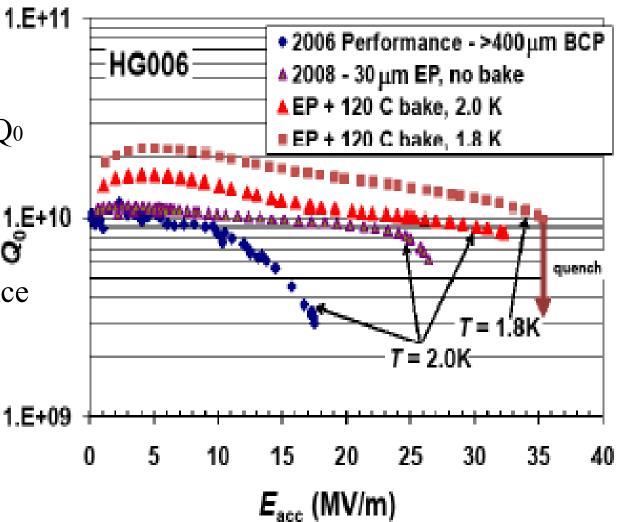

- Add 1 GV, 0.5 GV per Linac
- 1497 MHz CW

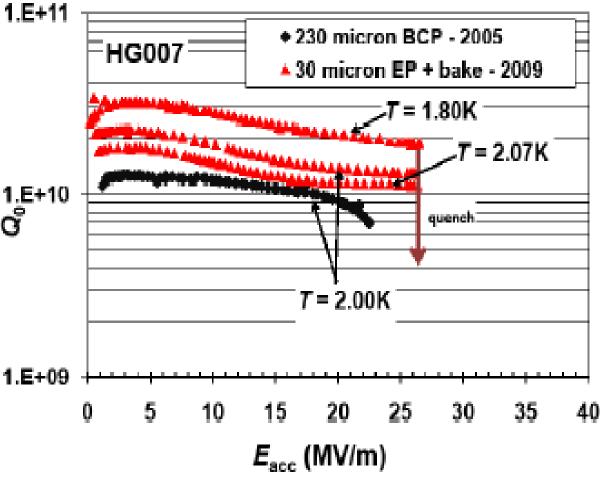
- 10 Cryomodules (CM), 100 MV each
- CM has 5.6 m active length, 8ea 7 cell cavities
- Eacc ~ 19 MV/m includes operational overhead
- 400 µA injected current (up to 6 passes)


Parameter List

Cryomodule			
Total active length	5.6 m	Cavity	
Voltage	108 MV	Frequency	1497 MHz
		Cavity active length	0.7 m
2 K heat load	≤300 W	Geometry Factor	280 Ω
50 K heat load	≤300 W	Ep/Eacc	2.17
Cryomodule length	~8.5 m	Hp/Eacc	3.74 mT/(MV/m)
и 839 Калариан Сарана С Сарана С С С С С С С С С С С С С С С С С С		Gradient	19.2 MV/m
	× \$2.750	Qext Fundamental Power Coupler (FPC)	3.2 * 107
	57.5°	FPC power rating	13 kW
	200 0 0	Dipole mode damping	< 1 *10 ¹⁰ Ω/m
efferson Lab			52/m

Cavity Performance Upgrade Baseline Plan


C100 Cavities with standard BCP processing meet project requirements


Cavity Performance with electro-polishing processing

- Aggressive BCP polishing had degraded Eacc and Q0 performance
- EP processing 1.E+10 recovers and 0 improves performance

Cavity Performance with electro-polishing, promising results

 Light EP processing improves Eacc and Q₀ performance after normal BCP processing

HOMs

- Requirement for injected beam current was increased, $100 \rightarrow 400 \ \mu A$
- Dipole mode damping $< 1 * 10^{10} \Omega/m$

- All requirements are met by existing design but
- Concern over cavity performance prompted extensive simulations and measurements
- End effects (including cavity to cavity) are critical for coupling at the beamline HOM couplers
- FPC coupling and HOM damping in the warm waveguide network is required

C100 cavity dipole impedance

C100-1 (HTB at 2K) 1e11 C100-2 (HTB at 2K) dipole impedance budget for 12 GeV era = 1e10 Ω/m 1e10 for propagating dipole modes the impedances depend on boundary conditions 1e9 magnitude 1e8 margin for more stringent 1e7 requirements 1e6 1e5 1e4

dipole mode impedances (Ω/m)

Order of

Jefferson Lab

modenomenclature and frequency (MHz)

Dipole shunt impedances for C100-1 and C100-2 respectively as derived from measured Ql values.

C100 Cavity Future

- Continue to investigate EP as an alternative to BCP (possibly a combination of both, BCP with a final EP)
- We will make a few, ~8, more C100 cavities in house
- Production order for 86 cavities has been placed
- Start receiving cavities next spring
- Finalize production processes and documentation before the cavities start to arrive

High Current Program

Jefferson Lab

ISA

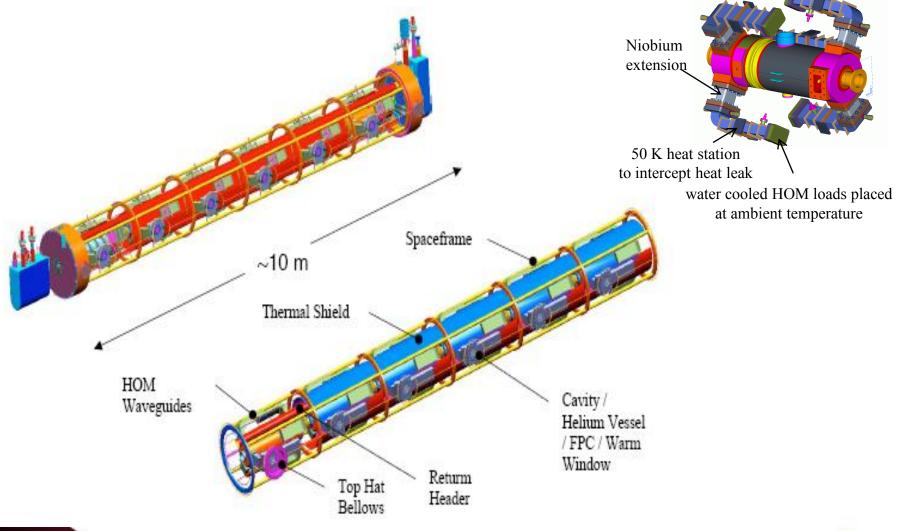
High Current Program

- JLAB has been in the business of FELs and ERLs for a long time using CW SRF linacs
- Existing Jefferson Lab designs are ok for ~ 10 mA and are in routine use at the existing JLAB FEL
- Beam current requirements have gone from ~ 1mA to ~10 mA to ~100 mA and talk of ~1 A
- Design and fabrication of 1 Amp and 100 mA cavities, 748.5 and 1497 MHz respectively, are complete (748.5 scaled to 1497 MHz)
- Conceptual designs for 1 A and 100 mA cryomodules is complete and design work continues on the 100 mA cryomodule

High Current Application, 1 Example

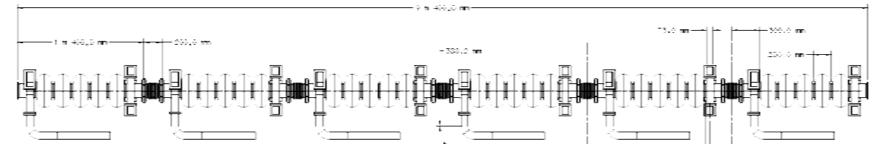
- High-average power ERL's face many challenges on the "current" frontier. Some similar to storage ring e+e- colliders, e.g. HOM damping, RF power.
- Typical "industrial-strength" FEL:
- ~100MeV beam energy,
- ~100kW+ optical power
- ~100mA+ beam current
- Compact layout (e.g. Dave Douglas)
- High real-estate gradient
- CW

- Low cryogenic load
 - Low wall losses
 - Warm HOM loads


1 Amp Cryomodule

- Requirements
 - Voltage100-120 MV- Length $\sim 10m$ Frequency750 MHz- Beam Aperture>3" (76.2mm)- BBU Threshold>1A- HOM Q's $<10^4$ Beam power0-1MW
- Other concerns:

- Low cryogenic losses
- Maintainability, flexibility, cost.


1 Amp Cryomodule Concept 6 each, 5 cell cavities

1 Amp Cryomodule Concept

6 cavity string

Jefferson Lab

Spaceframe / Thermal Shield Assembly

1 Amp CM Cryogenic Heat Load

- Dynamic Heat Load @ 2K ~ 400 W
 - Cavity Dissipation = 55 W per cavity
 - Eacc = 16.7 MV/m, Qo=8E9, R/Q = 636
 - HOM Dissipation ~ 8 W per cavity
 - 4 kW Power, 1.5 GHz
- Dynamic Heat Load @ $50 \text{ K} \sim 190 \text{ W}$
 - Due to heat-stationed HOM waveguides
 - FPC waveguides are gas-cooled
 - 200 kW operation requires 4x SNS-flow per coupler -0.15 g/sec/coupler
- Totals with Static Heat Load

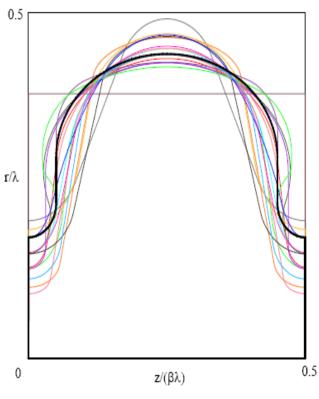
Jefferson

2K ~455 W 50K ~550 W

High Current Cavities

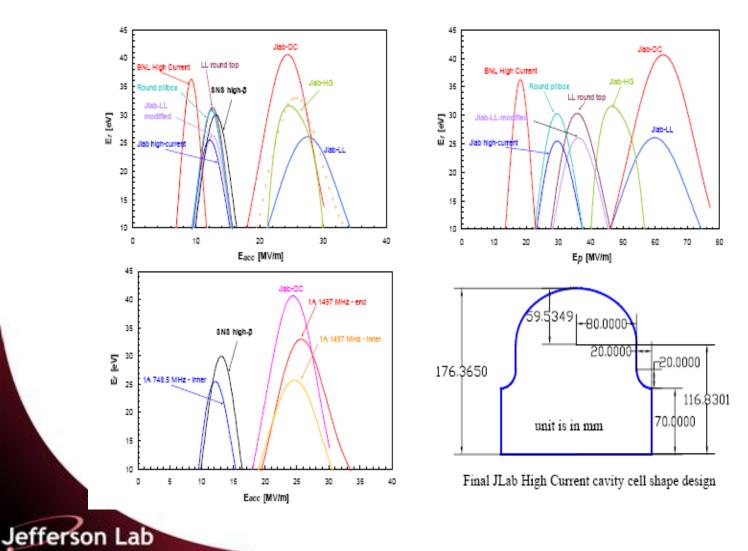
- Design considerations
 - Keep trapped modes away from beam resonances avoiding extremely large HOM power
 - Good HOM damping
 - Avoid multipacting barriers

1497 MHz 5 cell HC (100 mA) cavity

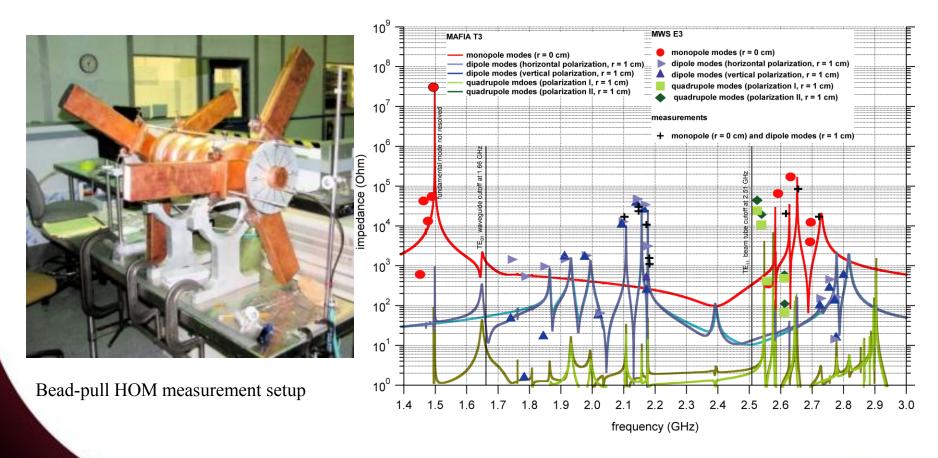

Prototype 1497 MHz cavity with endgroups

Cavity design

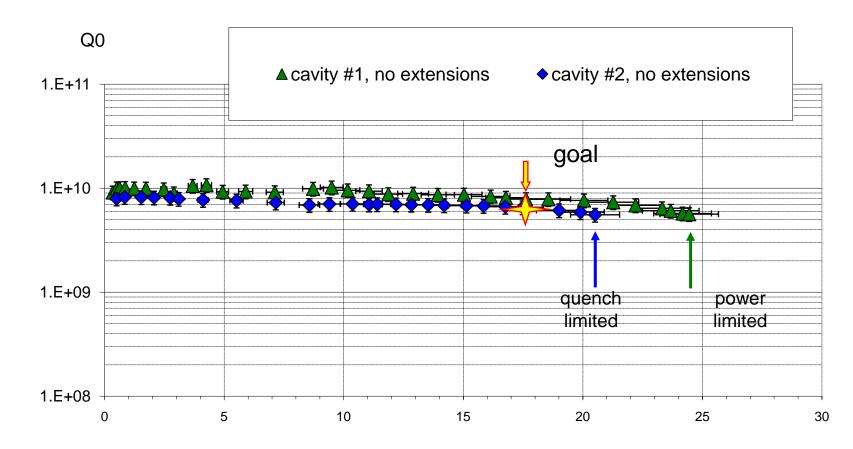
• Cell shape


- Comparison with other SRF projects
- JLAB uses a single geometry or center and end cells, end cells trimmed differently

Cavity design

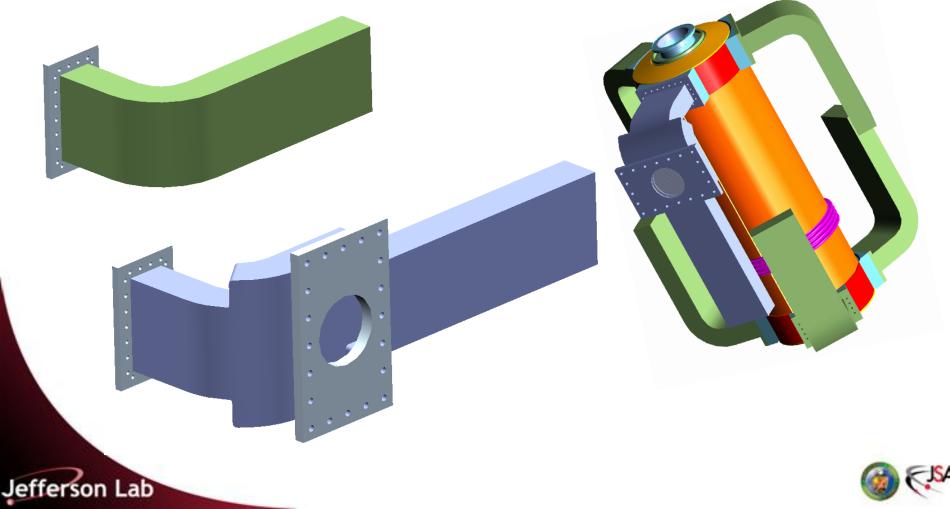

• Multipacting simulation using FishPact

Cavity Performance


• Extensive bench testing of Copper and Niobium single cell and multi cell cavities

Cavity Performance

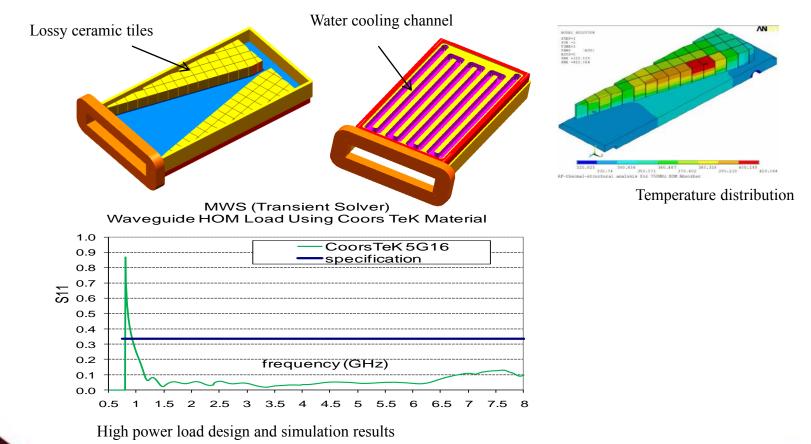
• 1497 MHz Vertical Test Data



Eacc (MV/m)

Components

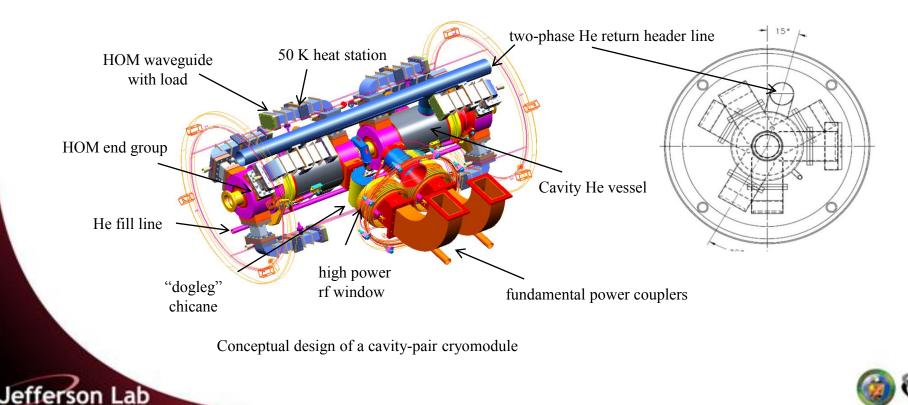
- HOM Waveguide Coupler
- Combination HOM/FPC Waveguide Coupler



Components

• HOM Load, 4 kW

Jefferson Lab


• RF planar window, M. Stirbet THPPO056

100 mA Cryomodule Design

- Use existing 1497 MHZ cavities
- Use existing horizontal test bed cryostat
- Complete designs of "critical" components, FPC, HOM couplers and loads, RF window

100 mA Cryomodule Plans

- Complete design, fabrication, and assembly
- Tests in FY10

- Acceptance testing in the Cryomodule Test Facility
- Beam tests in the FEL

High Current Program

- Actively prototyping and testing critical components
 - Cavities
 - RF couplers, FPC and HOM
 - RF windows
 - HOM loads
- Cryomodule designs going forward existing components as much as possible
- Beam test in FY10

Summary

- 12 GeV Upgrade cavity work is in good shape and the order for 86 cavities has been placed
- Work continues on improving processes for best cavity performance
- High current program at Jefferson Lab in alive and well
- Design, prototype, and testing of components is ongoing
- Design work for a beam test cryomodule has started
- Beam test is planned for FY10

