Project-X at Fermilab

Bob Kephart Fermilab

SRF2009 Berlin, Sept, 2009

Project X: What is it?

- A new multi-MW Proton Source under development at Fermilab.
- Enables a world-class Long Baseline Neutrino Experiment (LBNE) via a new beam line pointed to DUSEL in Lead, South Dakota.
- Enables a broad suite of rare decay experiments
- Currently two versions of this machine are under consideration.
- Both versions provide 2 MW of beam power to LBNE
- ICD-1 is based on a pulsed 8 GeV 20 ma ILC-like H⁻ linac
- ICD-2 employs a 2 GeV 1 ma CW linac that accelerates H⁻ or P's
 - Provides an additional 2 MW to the high intensity program

Very flexible beam manipulation via RF separators

-2-8 GeV = either a pulsed linac or a rapid cycling synchrotron.

Project X website: http://projectx.fnal.gov/

Multi-MW Proton Facility – Project X

8 GeV ILC-like Linac

Tevatron

Recycler:

NuMI (NOVA)

DUSEL

Main Injector:

al the start

ICD-1 Layout

SRF2009, Berlin, Sept 2009 – R.D. Kephart

SRF Linac Technology

Most ~ 7/8 of LINAC is built of ILC-like CM but ~ 25MV/M gradient

SRF2009, Berlin, Sept 2009 – R.D. Kephart

ICD-1 Operational Challenges

- ICD-1 is not ideal for the planned low energy Rare Decay Program
 - Requirements:

	Train Frequency	Pulse Width	Inter-Pulse
	(MHz)	(nanoseconds)	Extinction
Kaon experiments	20-30	0.1-0.2	10^{-3}
Muon conversion experiment	0.5-1.0	50	10-9*
Muon g-2 experiment	30-100	50	

- The Recycler was not designed for high intensity slow spilled beam
 - Recycler delivers 15 Hz packets to the Debuncher for slow spill to mu2e.
 - The Debuncher appears limited to ~150 kW in this mode
- ICD-1 does not yet have a solution for the kaon requirements
- \Rightarrow ICD-1 generates substantially more 8 GeV beam power than can effectively utilized
- \Rightarrow Slow spill is inherently lossly so limits power delivered to rare decay programs

 \Rightarrow Still feeds H- at 8 Gev to MI for the DUSEL neutrino program

 \Rightarrow RF splitter delivers desired bunch structures to rare decay programs (with low losses)

~ Synergy with ILC R&D but long pulse R&D needed

SRF2009, Berlin, Sept 2009 – R.D. Kephart

Could also go directly to MI

Evaluating Rapid Cycling Synchrotron for possible cost savings

Cavity and CM Summary

Frequency	Туре	#	ICD-1	ICD-2 (1)	ICD-2(2)
Shape	beta	cells		Required	Required
		gaps			
325 MHz	SSR0	2	Warm	4 CM	4 CM
Spoke resonator	0.11			18 cavities	18 cavities
325 MHz	SSR1	2	2 CM	2 CM	2 CM
Spoke resonator	0.22		18 cavities	18 cavities	18 cavities
325 MHz	SSR2	2	3 CM	3 CM	3 CM
Spoke resonator	0.40		33 cavities	33 cavities	33 cavities
325 MHz Triple	TSR	3	7 CM	8 CM	8 CM
Spoke resonator	0.60		42 cavities	48 cavities	48 cavities
1.3 GHz	S-ILC	7,9,	8 CM	11 CM	11 CM
Squeezed Elliptical	0.81	11 ?	56 cavities	66 cavities	66 cavities
1.3 GHz	ILC	9	38 CM	41 CM	9 CM
Tesla shape Elliptical	1.0		296 cavities	316 cavities	68 cavities

Cavity Totals — 445 —

SRF2009, Berlin, Sept 2009 – R.D. Kephart

Project X

499 — 251

R&D Plan

- Goals:
 - Complete baseline design, cost and schedule estimates in 2012
 - Technical component and infrastructure development
- Linac (325 MHz)
 - Spoke resonator development
 - High speed variable chopping patterns (325 MHz)
 - RF control of multiple accelerating structures from single klystron
- Linac (1.3 GHz)
 - Cavity & CM development coordinated with ILC
 - 25 MV/m gradient with good yield
 - ICD-1: (20 mA average) x 1.25 msec x 2.5 Hz
 > 3 times the charge/pulse of ILC
 - ICD-2: ILC cryomodules operated with CW

> 2-8 GeV linac requires 20-50 ms 1 ma pulses

• H⁻ transport, multi-turn injection, space charge, e-cloud, civil, etc

differences

HINS 325 MHz Single Spoke Design Parameters

Quantity	Value			11
Operating temperature	4.4 K	Original		
HINS accelerating gradient, E _{acc} *	10 MV/m	Plan		
Q_0 at accelerating gradient	> 0.5x10 ⁹			
Beam pipe, Shell ID	30 mm, 492 m	ım		
Lorenz force detuning coefficient	3.8 Hz/(MV/m) (with He vess)² sel)		
E _{peak} /E _{acc} *	2.56		End-wall	End-wall
B _{peak} /E _{acc} *	3.87 mT/(MV/r	m)		
G	84 Ω			
R/Q ₀	242 Ω		Shell	Shell
Geometrical Beta, β_g	0.21		Circ. Ri Cc	Circ. Rib Coupler port

* E_{acc} is the total accelerating voltage divided by L_{eff} , where $L_{eff} = (2/3)\beta\lambda = 135$ mm, the distance between the edges of the accelerating gaps at the two endwalls.

SSR1 Spoke Resonator VTS of bare cavity

 Q_0 .vs. E_{acc} and x-ray intensity as measured at the top of the VTS

1.3 GHz Joint Development Strategy

- Project X shares 1.3 GHz technology with the ILC
 - Project X requires 20-52 ILC-like cryomodules.
 - \succ In detail they will not be identical to ILC:
 - Focusing required in all CMs
 - Gradient: 25 MV/m spec (but try for higher)
- Close coordination of Project X and ILC R&D program
 - Developing U.S. cavity vendors
 - Cavity gradient and yield!
 - Shared facilities for assembly & test
 - RF unit beam facility
- 4 year construction \rightarrow 1 CM/month
 - Building extensive infrastructure at FNAL for both Project X and ILC R&D

S-ILC

ILC

1 1 1

2/5/8 style CM

String Assembly

ANL/FNAL EP

MP9 Clean Room

Final Assembly

1st U.S. built ILC/PX Cryomodule

1st Dressed Cavity

Project X 1st Cryomodule moving to NML

NML is our RF unit test facility An important facility for both Project X & ILC R&D

Progress at NML

- Project X is central to Fermilab's strategy:
 - Energy Frontier: Aligned with ILC technology development; preserves Fermilab as potential site for ILC or a Muon Collider
 - Intensity Frontier: Supports a world leading program in neutrinos and rare processes; preserves Fermilab as potential Neutrino Factory site
- An initial configuration (ICD-1) has been established meeting requirements as specified in the P5 report
 - >2 MW at 60-120 GeV, simultaneous with >150 kW at 8 GeV
- An alternative (ICD-2) is being explored that could also deliver
 - ~ 2 MW at 2 GeV with beam structure optimized for rare decays
- The facility could be constructed over the period ~2014 2018
- The initial configuration can be upgraded to 2-4 MW
- Active and growing Project X R&D program (\$ 52.7 M of stimulus!)
- R&D integrates effort on Project X, ILC, SRF, and Muon Facilities