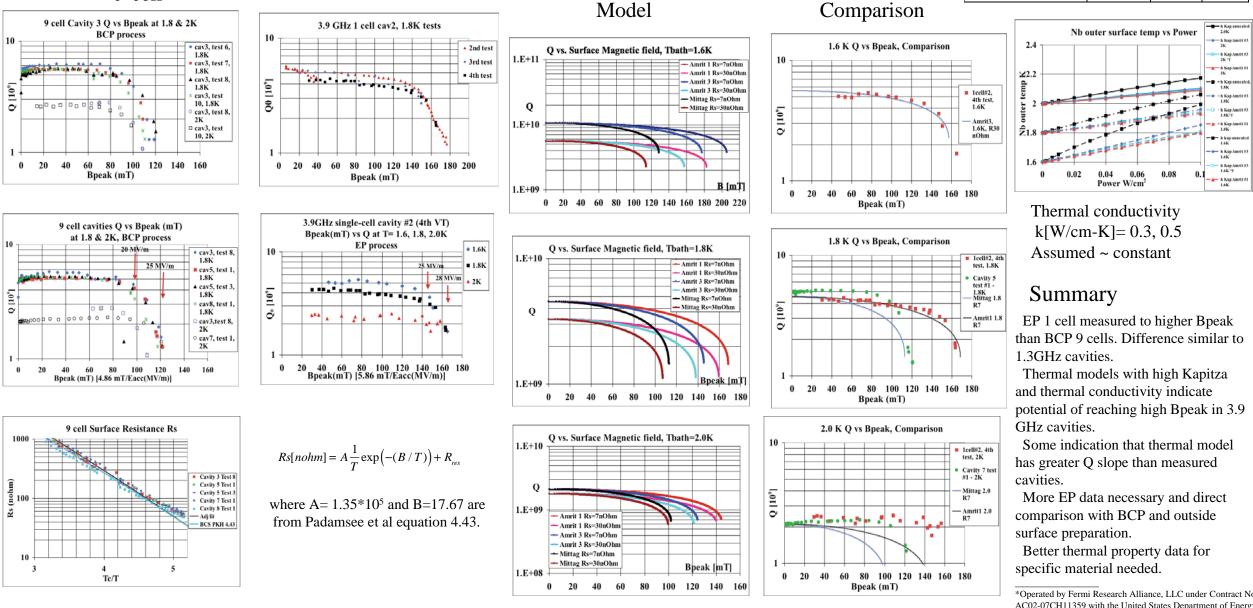
Comparison of Buffered Chemical Polished and Electropolished 3.9 GHz Cavities*

Helen Edwards[#], Charlie A. Cooper, Mingqi Ge, Ivan V. Gonin, Elvin R. Harms, Timergali N. Khabiboulline, Nikolay Solyak, Fermilab, Batavia IL, USA

Abstract


Five 3.9 GHz 9 cell cavities have been measured for the DESY FLASH module. These cavities were BCP processed and reached gradients of typically about 25 MV/m with Q drop starting at about 20 MV/m. Recently a few one cell cavities have been processed with EP and at least one has tested to a gradient of 30 MV/m with Q drop starting at about 25 MV/m. We will compare the results and give an update to the thermal analysis in relation to global thermal breakdown at 3.9 GHz. 1 cell

9 cell

Parameter	3.9 Ghz 9	3.9 Ghz 1
	cell	cell
Ep/Eacc	2.26	1.99
<i>Bp/Eacc(mT/MV/m)</i>	4.86	5.86
G1 (ohm)	275	317
Active length (m)	0.346	0.0384
R/Q (ohm)	750	50.5
Input coupler port	yes	no
& HOMs		
Wall thickness	2.6	2.6
(<i>mm</i>)		

Thermal model Kapitza Conductance

f	$\left(\frac{\Delta T}{T_{_{bath}}}\right)$	$=1+\frac{3}{2}$	$\left(\frac{\Delta T}{T_{_{bath}}}\right)$	+	$\left(rac{\Delta T}{T_{_{bath}}} ight)$	$^{2} + \frac{1}{4}$	$\left(\frac{\Delta T}{T_{bath}}\right)^3$	

	identify	Α	В
ineal Nb2	Mit ann	0.020	4.65
h #1	Amr#1	0.0935	3.55
neal, etch	Amr#3	0.062	3.95

^{*}Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy. #hedwards@fnal.gov