

ON THE FIELD DEPENDENT SURFACE RESISTANCE OBSERVED IN SUPERCONDUCTING NIOBIUM CAVITIES

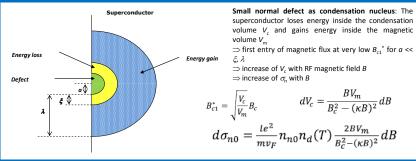
W. Weingarten, CERN, Geneva, Switzerland

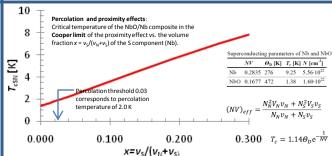
Reason of study: Understand intrinsic limitations of SRF cavities (Q-slope/Q-drop/low field Q-increase)

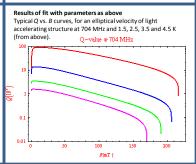
Experimental data: The data consist of about 1400 quadruples (R_s , B, f, T) collected from cavity tests of a very broad provenience in temperature T, frequency f, shape, cell number, surface treatment, niobium quality, etc.

Theoretical model: based on the entry of magnetic flux, by the action of the RF magnetic field *B*, starting at normal conducting "defects" at the surface (nucleation centers) and increasing the normal conducting charge carrier density and consequently the surface resistance.

Specificities of model:


- Starting point are normal conducting defects (identical with NbO) of size 2a << ξ, λ agglomerated in NbO/Nb composite.
- 2) These defects are subject to the percolation and proximity effects.
- (3) A continuous path of Nb inside NbO/Nb composite exists above a volume ratio of 0.030 (percolation threshold)
 - In the Cooper limit of the proximity effect the percolation threshold corresponds to a critical temperature of the defects of T' = 2.04 K (percolation temperature);
 - If T > T' the defects fragment into its constituents that allow entry of magnetic flux into the circumjacent Nb already for very small B <<
 B, (Q slope), with a drastic increase close to B, (Q drop);
 - If T < T' the defects coalesce into a large normal-conducting defect that does not allows entry of magnetic flux into the circumjacent Nb unless for very large B ~ B_c (Q drop).
- (4) The defects become normal conducting already at low RF magnetic fields $B \ll B_c$ (low field Q increase) and give rise to residual surface resistance.


Comparison data vs. model: A fit without free parameters of the large sample of collective cavity data allows the determination of the model-relevant physical parameters, which agree with accepted values.


Parameter	Error interval*)	Parameter	Error interval
λ[nm]	(86, 89)	$\Delta k_B T_c$	(1.68, 1.73)
RRR	(480, 530)	B _c [mT]	(190, 220)
К	< 0.95	$R_{\rm res} [n\Omega]$	(1.2, 2.0)
$R_{\rm res}$ ' [n Ω]	(19, 28)	$L [J/m^2]$	< 5·10 ⁻¹²
w [K]	< 0.03	T' [K]	(2.01, 2.12)
T _c [K]	(8.8, 10.2)	n _{d0} [m ⁻³]	$(0.6, 1.1) \cdot 10^{24}$
ε"d [m]	(0.17 0.35)·10 ⁻¹²	k	(1.740, 1.745)
1	(0.98, 1.01)	m	< 1.1
n	(1.58, 1.60)	*) error defined for $\chi^2 < 1300$	

Legend of symbols

Symbol	Physical parameter	Symbol	Physical parameter
λ	penetration depth	ΔAk_BT_c	energy gap of Nb
RRR	residual resistivity ratio	B_c	thermodynamic critical field of Nb
K	Ginzburg-Landau parameter	$R_{\rm res}$	residual resistance
R _{nes} '	temperature independent term that contributes to Q-drop losses	L	latent heat per square meter
w	width of percolation temperature	T	percolation temperature
T_c	critical temperature of Nb	$n_{\rm d0}$	defect density
ε"	dissipation factor in Nb ₂ O ₅	d	thickness of Nb ₂ O ₅
k	exponent of frequency dependent factor (BCS surface resistance)	I	exponent of frequency dependent factor (dielectric losses)
m	exponent of frequency dependent factor (low field Q-increase)	n	exponent of frequency dependent factor (Q-slope/Q-drop)

