

- accelerating element.

- coulomb barrier.

Beams accelerated with all the eight cavities operational					perational	Problems encountered and the corresponding correcti		
Beam 12C+6 16O+8	Energy from Tandem (MeV) 87 100	ΔT Harmonic Buncher (ns) 0.95 0.95	ΔT Super Buncher (ps) 250 163	Energy gain LINAC (MeV) 19.2 18	ΔT Re Buncher (ps) OFF 342	Problems EncounteredSudden Q drop of the superbuncher cavity during operation $3 \times 10^8 \rightarrow 5 \times 10^6$	Probable causeNot fully understoodPerhaps heating up of thesuperconducting surface due totrapped helium gas	Cor Cavity emption warmed up t Q value recor cool down
$ \begin{array}{r} 18O^{+8} \\ 19F^{+9} \\ 28Si^{+11} \\ 48Ti^{+14} \\ 107Ag^{+21} \end{array} $	100 115 130 162 225	0.96 1.08 1.2 1.68 1.7	182 190 182 176 232	20 25.8 37.5 51.2 74.6	378 354 OFF OFF OFF	Failure of one rebuncher cavity	Fault in the power line of the cavity	Cavity was so Rebunching a the single op

 Scheme is working fine with the present module However!! Average power requirements high ~150 W Use of pure Helium gas proving expensive Therefore for the upcoming modules 2&3 Use of Piezo based tuning scheme planned 	
 Piezo response time ~100 ms Intermediate between the fast and the mechanical tuner → Expected reduction in forward power Coarse tuning by moving the Niobium bellows with motor → Use of Helium gas will be avoided 	96.9207 96.9206 96.9205 96.9204 96.9204 96.9203 96.9203 96.9202 96.9201 Tuning ran 96.9200 -20 0

OPERATIONAL EXPERIENCE WITH THE IUAC LINAC

A. Rai, S. Ghosh, R. Mehta, G.K. Chaudhari, P. Patra, B.K. Sahu, A. Pandey, D.S. Mathuria, R.N. Dutt, S.S.K Sonti, K.K. Mistri, R. Joshi, A. Sarkar, J. Chacko, A. Chowdhary, S. Kar, S. Babu, M. Kumar, J. Antony, J. Zacharias, P.N. Prakash, T.S. Datta, D. Kanjilal and A. Roy Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi, India

- ➢ Initial test results encouraging
- Cavity successfully phase locked @ a moderate field level ~ 3 MV/m with piezo operating in conjugation with the fast tuner
- > Development and integration of the mechanical arrangement for coarse tuning is underway.

> Design modification in cavities

The second and third LINAC modules

- > Cavities and other accessories are ready
- > The fabrication work of the two cryostats is completed.
- > Installation of Resonators will begin shortly.
- Beam acceleration through full LINAC is expected by the spring of next year

The First Module : Operation Initial Operation Initial Operation started a few years ago. smooth →Large power requirements for phase control of cavities → Leaks from the transition flange bellows and the design modifications and implementation of an ingenious vibration damping technique. Helium gas

Top Plate LN₂ shield The New LINAC Cryostat