

3.5-cell Superconducting Cavity for DC-SRF Photoinjector at Peking University

Jiankui HAO (for PKU SRF Group)

DC-SRF photoinjector was upgraded for PKU-FEL. A 3.5-cell SC cavity is the key component of the DC-SRF photoinjector. Two 3.5-cell SRF cavities was fabricated with large grain and fine grain niobium (from Ningxia OTIC) at Peking University. Vertical test shows the Eacc reaches 23 MV/m with $Q=1.2\times10^{10}$ at highest gradient. The 3.5-cell LG Nb cavity was installed to the new DC-SRF photoinjector and will be tested with the cryomodule.

DC-SRF Photoinjector

DC gun
 3.5-cell SC cavity
 Power coupler and Cryostat

The DC-SRF photoinjector consists of a DC Pierce gun with a 1.3 GHz 3.5-cell SC cavity.

- Compatibility of photocathode and SC cavity
- Compact structure
- > CW mode
- Provide high average current (mA)
- High quality electron beams

DC-SRF Cryomodule

Key component: 3.5-cell SC Cavity

Design Parameters

Mid-cell (TESLA-type)

First-cell

Mode	TM010, π -mode		
Frequency	1300MHz		
Q_0	\geq 5×10 ⁹		
Eacc	15 MV/m		
Effective	0.417 m		
acc length			
G	242 Ω		
r/Q	417 Ω		
E _{peak} /E _{acc}	2.12		
B_{peak}/E_{acc}	4.95 mT/(MV/m)		

	Mid-cell	Left cup (1st cell)	Right cup (1st cell)	End-cup
Requator	103.3	105.3	105.3	103.3
Riris	35	6	35	39
Rc	42.0	17.14	17.14	40.3
a	12	3	12	10
b	19	3	20	13.5
Length	57.7	35.19	37.72	56.0

No multipacting for good surfac treatment

Simulation with MultiPac

Simulation with FishPact

Stiffen Ring Optimization

Lorentz force facror	Tuning range	$\Delta f/0.1$ mm	Force /0.1mm	Flatness change $(\pm 0.4$ mm deformation)
1.2 Hz/(MV/m) ²	$\pm 200 \text{ kHz}$	70 kHz	1000 N	<3%

No influence on DC structure within $\pm 0.4~\text{mm}$

End Group

Cross talk between Pickup and main coupler

LG 3.5-cell cavity

RF Measurement

Field Flatness Tuning

HOM

BCP & 1250°C purification in China

Vertical test at Jlab

Cavity actions since second test

- 1.Bead pull for field flatness
- 2. Ultrasonic cleaning
- 3.BCP etching (30 micron at equators and ~ 100 um near cathode hole)
- 4.HPR, 1 passes
- 5. First assembly
- 6.HPR, 4 passes
- 7. Final assembly
- 8.Pump down and leak check
- 9.Cool down
- 10.RF test at 2 Kelvin
- 11. warm up to room temperature and cool down again
- 12. re-test at 2 Kelvin

Cavity actions since third test

1.Ultrasonic cleaning
2.Vacuum furnace treatment 800C X 2hr
3.Ultrasonic cleaning
4.BCP etching (~25 micron at equators)
5.HPR, 3 passes (nozzle head w/ 45 degree jet)
6.First assembly (all parts except bottom flange)
7.HPR, 3 passes (nozzle head w/ 45 degree jet)
8.Final assembly
9.Pump down and leak check
10.Cool down
11.RF test at 2 Kelvin
12. More LHe transfer

13. re-test at 2 Kelvin

3rd RF Test

PKU 3-1/2 cell

Test1: +HPR at JLab Test3: +BCP 30um + HPR at JLab Test3+: +Warm-up to RT and cool down

4th RF test

Contact

Dr. Jiankui HAO Institute of Heavy Ion Physics Peking University Beijing 100871, P.R.China Tel: +86-10-62767160 Fax: +86-10-62758849

Email: jkhao@pku.edu.cn

Acknowledgement

Great thanks to Dr. Rong-Li Geng, etc. at Jlab for cavity test.