

Re-accelerator (ReA3) Project

• Upgrade to NSCL experimental program

• **Provide FRIB type experiments to users**

• Dress Rehearsal for FRIB

Item	Quantity	1 st Cryomodule: rebuncher, j
Cryomodules	3	2 nd Cryomodule: acceleration
$\beta = 0.041$ quarter wave resonators	7	
$\beta = 0.085$ quarter wave resonators	8	3 rd Cryomodule: acceleration
9 tesla superconducting solenoids with x and y correctors	8	$\mathbf{O} = Cavity$
		Solenoid

ReA3 Cavity & Cryomodule Designs

		Optimum β	0.042	0.085
eam QWR β=0.041 QWR β=0.085	Frequency	80.5 MHz		
	Design $E_{\rm p}$	16.5 MV/m	20 MV/m	
	Design $B_{\rm p}$	29 mT	45 mT	
	Design V_a	0.45 MV	1.03 MV	
	Active length	95 mm	210 mm	
	$R_{\rm a}/Q_0$	433 Ω	416 Ω	
	G	15 Ω	18 Ω	
	Т	4.5 K		
	Design Q_0	$5 imes 10^8$		
	Aperture	30 mm		
Cryogenic Supply				

Production Cavities and Cryomodules for a Heavy Ion Re-accelerator at Michigan State University

W. Hartung, J. Bierwagen, S. Bricker, C. Compton, J. DeLauter, M. Johnson, O. Kester, F. Marti, D. Norton, J. Popielarski, L. Popielarski, N. Verhanovitz, J. Wlodarczak, R. York Michigan State University, East Lansing, MI A. Facco, INFN-Legnaro, Legnaro, Italy **E. Zaplatin,** FZ-Juelich, Juelich, Germany

ReA3 Cavity Fabrication

Cavity Fabrication at MSU

•QWR 80.5 MHz, $\beta = 0.041$ •8 cavities in production • Same cavity used in FRIB linac

Sub-assemblies

Tuning plate

β = **0.041**

on, β = 0.041 n, β = 0.085

Chemical Etching (BCP)

High-Pressure Rinse

Clean room Assembly

Industrial Fabrication – Technology Transfer

- •QWR 80.5 MHz, $\beta = 0.085$
- •10 cavities in production
- Same cavity used in FRIB linac
- •Sub-assemblies being fabricated by industry (Niowave, Inc.)

Forming of inner & outer conductor

Electron-beam welding of cavity sub-assemblies

Related Talks ReA3 – Oliver Kester (MOOCAU05) FRIB – Richard York (FROAAU02)

ReA3 Cryomodule Fabrication

Stiffening buttress

Cavity Processing and Testing at MSU

Dewar test results for $\beta = 0.041$ cavities

He distribution

Vacuum vessel

Cool down of Rebuncher cryomodule (after nitrogen precooling) Testing

- **RF** measurements

- Dynamic load measurements: in progress
- Solenoid operation: in progress

Cold mass assembly at MSU

Cold mass

ightarrow Up to $E_{\rm p} = 36$ MV/m with direct connection

> Up to $P_f = 500$ W with direct connection

>Input coupler $Q_{ext} = 1.2 \times 10^6$; BW = 67 Hz (design = 42 Hz) • Static load measurement: 8 W (from level vs time)

• Tuner operation: 28 kHz tuning range (6 mm; |force| < 950 N)