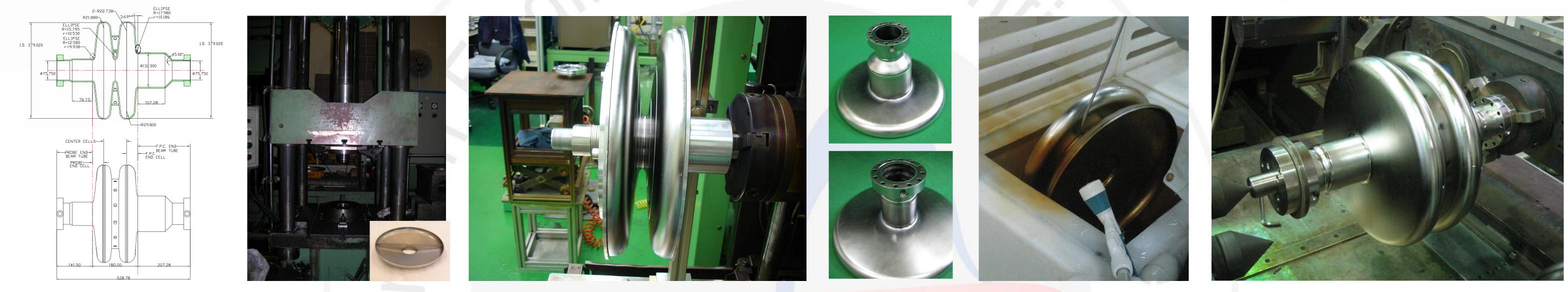


PROTOTYPING AND VERTICAL TEST FOR PEFP LOW-BETA ELLIPTICAL CAVITY*

Han-Sung Kim#, Hyeok-Jung Kwon, Yong-Sub Cho, PEFP, KAERI, KOREA Sun An, Pohang Accelerator Laboratory, KOREA

Introduction to the PEFP SRF Program

Program Goals :


To develop a SRF linac to accelerate a proton beam from 80 MeV at 700 MHz.		Frequency (MHz)	700	Stiffening structure	Double -ring
		Cavity type	TRASCO-ASH type	Min. <i>K</i> _L [Hz/(MV/m)²]	-1.1
In the first phase, to develop & construct two low-beta cryomodules.		Cavity geometrical <i>b</i> _g	0.42	Field flatness sensitivity (%/MHz)	49.1
To develop SRF technologies at PEFP.		Cavity effective b	0.45	Frequency sensitivity (KHz/mm)	188
		Number of cell-die sets	3	Tuning sensitivity (N/mm)	4498
To setup basic SRF facilities at PEFP.	Cell-to-cell coupling (%)	1.41	Maximum Von Mises stress (MPa)	12.6	
	Cavity length (cm)	86.0			
		Number of cells	5	HOM damping modes	M23, M31, M32, M 33, D1 D32
		$E_{\rm pk}/E_{\rm acc}$	3.71	HOM damping mode Q _{ext}	≤ 3×10 ⁵
		B _{pk} /E _{acc} [mT/(MV/m)]	7.47	HOM average RF load	≤ 1.0 W
		<i>R/Q</i> (Ohm)	102.30	TM010 π mode Q_0	≥ 6.26×10 ¹⁰
<u>lectronic field profile of the TM01</u> π mode of PEFP low bate cavity	Stiffening structure of the PEFP Low beta cavity	G (Ohm)	121.68	TM010 π mode RF load (in the macro-pulse) at E_{acc} =8 MV/m	≤ 10 W

Parameters of a PEFP low-beta cavity

KAFR

Two-Cell Niobium Prototype Fabrication

Electron Beam Welding to make sub-assembly Chemical cleaning before welding **Final Electron Beam Welding**

Deep Drawing

Broken Parts During Deep Drawing Process

Frequency Spectrum Before and After EB Welding

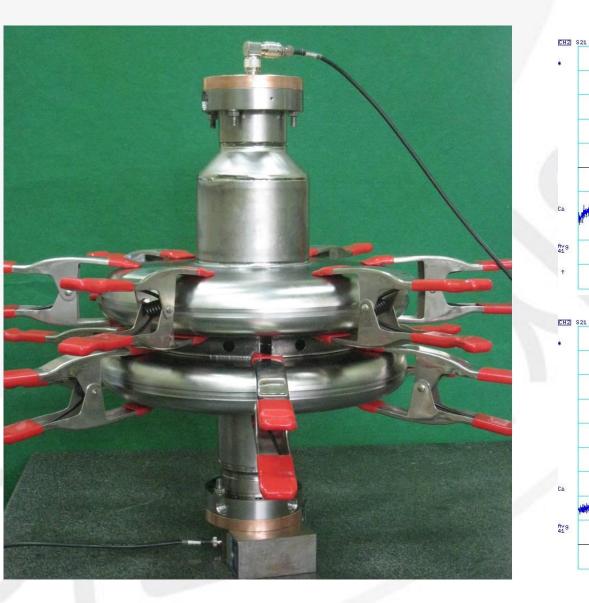
4 Sep 2009 15:29:18 1:-54.326 dB 692.818 750 M

Before Welding

After Welding

589.375 MH:

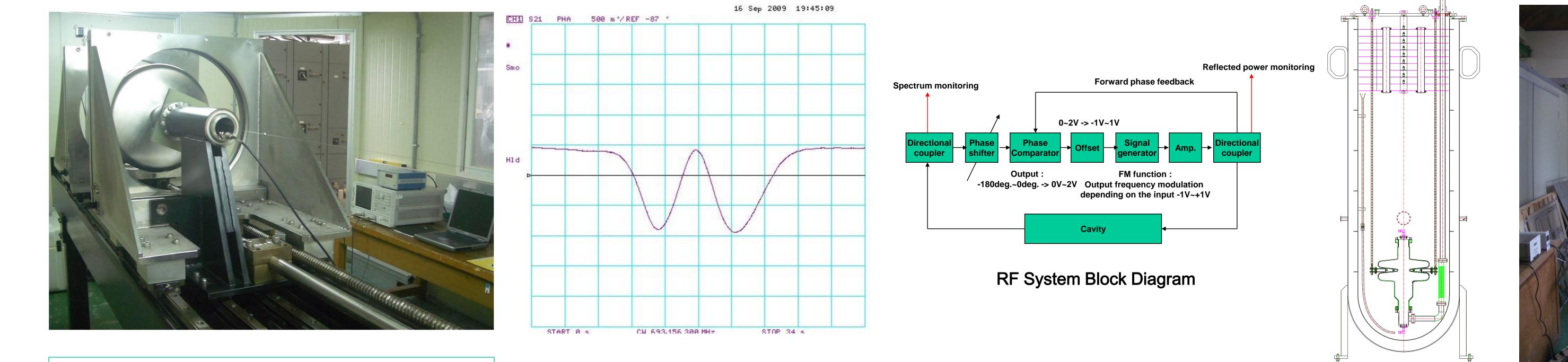
CH2 Markers Max 2:-55.328 dB 687.809 MHz

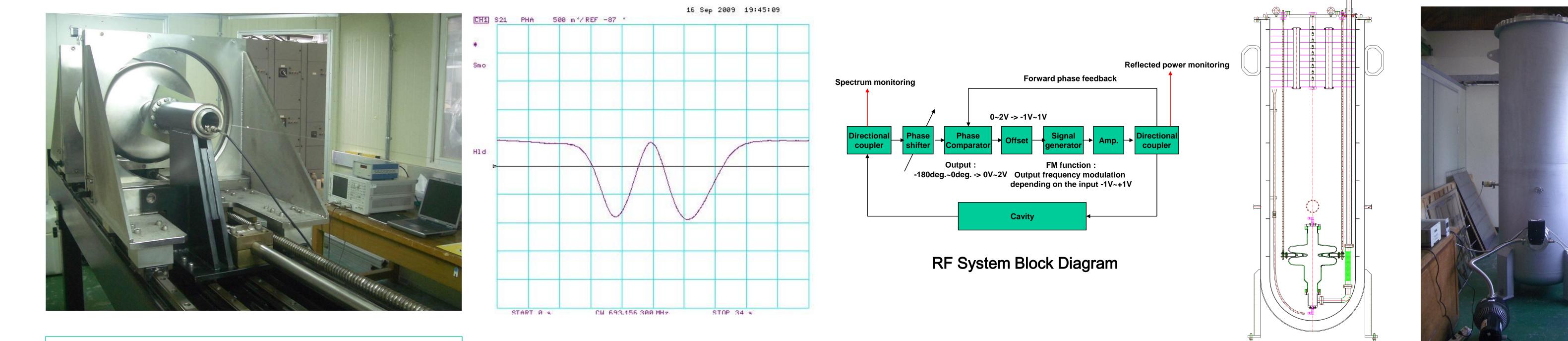

Half cell iris part

Probe End Transition part

FPC End Transition part

\$ 190 × \$30


Deep drawing experiences show that the mechanical properties of niobium is much different from those of copper, especially when the sheet is thick (~4.5 mm).



000 MHz		Mode	Before Welding	After Welding	Frequency Change
1 53 5 000 MHz CH2 Markers M2 2 4.101 dB 6 94.264 MHz	Max 2:-44.101 dB	PI/2 mode [MHz]	687.810	689.375	1.565
		PI mode [MHz]	692.813	694.264	1.451
000 MHz					

Field Flatness Measurement

Vertical Test Preparation

Cryostat for Vertical Test

Measured field flatness:1.8% Field flatness requirement of the PEFP cavity: 8.0%

Summary and Future Work

Prototype two-cell niobium cavity has been developed for the SRF program in PEFP. The cavity was fabricated through the deep drawing process and the electron beam welding m ethod. We gained some experience on the deep drawing of the thick niobium sheet and the electron beam welding conditions during the fabrication of the cavity. We measured the frequency spectrum and the field flatness. The measured field flatness was 1.8%, which is well below the required field flatness of 8.0%. The vertical test is under preparation. We t ested basic PLL test and confirmed that the setup works well. The cryostat is ready to be tested. The vertical test will be performed in near future