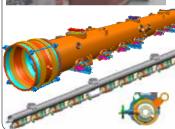
Nb/SUS Joint of Helium Vessel Base Plate for SRF Cavity Dressing

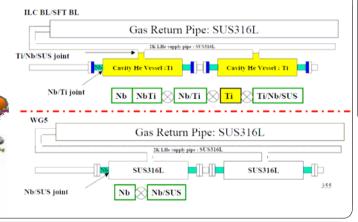
Kenji Saito, Fumio Furuta, Hitoshi.Inoue High Energy Accelerator Research Organization (KEK)

Abstract


Different material joint is a key issue for dressing of the SRF cavity. So far the baseline design of ILC is to use titanium Helium vessel, however, it will make very complicated procedure point of high vessel regulation code. If material is changed to SUS316L from niobium at the place close to cavity, the regulation control will be more relaxed. We have developed the joining method niobium and SUS316L applying HIP technology, and demonstrated to work in the STF program. The result will be presented in this paper.

Introduction

High Pressure regulation for low extremely low Temperature is a hidden serious issue to construct such a huge accelerator system like ILC.


We need some ideas to overcome this issue.

High Pressure Regulation

Niobium, Titanium and other different material joints (Nb/Ti, Nb/SUS) are issues of high pressure regulation. Generally speaking from safety point of view, one should no use none experienced material at low temperature for such a huge accelerator like ILC.

Mechanical Properties

Mechanical properties

Requested values @ absorbed energy J[Joule] at 4.2K for JPN regulation:

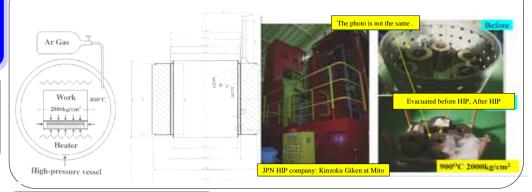
J > 14 for < 450,

J > 16 for 450 < < 520,

J > 20 for 520 < 660,

Nb/Cu/SUS : Cu 0.8mm

J > 27 for 660 < [MPa]

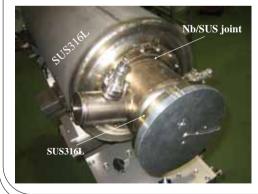

In the table, the data by red color is by H.Naka and A.Terashima at KEK, which will be published somewhere.

Blue one is by K.Tsuchiya at KEK.

NbTi is too brittle at cryogenic temperature. Nb/SUS joint will be okay if the copper is little bit thicke

Metotali	8.2% York Storage [MPa] 300K 77K 4.2K			NAME THE PAPER ASK			NOR TE ATE		
36	343-010 110400	419.7+111	623.26.47.7 -018.7 s26.1	107.4-154.5 104.0-41.5	*******	930 Ga 483 867,5 478			
2st Grade	3945 4.42	3863 ± 5.5	408.3 + 13.8	(917/48)	711.7++2	911.7499	363+49	2018+162	1818+135
2 rd Geode Trackets	BRATE I	116+65	8913 x 16.0 8913 x 70)	MITATI HISTORY	\$651434 84634367	1907-433 1983-633	1011+3.1 (MITHE)	120×13	218+43 613 see
71						Toronto and	1100+00	38.5 + 11.6	
29/26	£32.7 48.8	-		412.1 +41.0	\$25.0 aug. 5	1107 E-618-0	22.8 mile.	42 40.2	22448
NUNTER.			B74+23			14816430	-		
Tic(140)/Tic(144) TIG melding	2747+213	H33+228	1977+478	403421	822.0 + 2.6	3802+31	368+9	36.4+20	342+13
Ti(T ^{all}) Ti (T ^{al}) EBW	3348+17 3258+18	393+12 5026+24	6813×3.6 6017×5.1	447.7±44 393.6±2.2	818.7×23	10011×101	36.6+13 66.6+13	157A0	128+13 163+13
NATION) EBW	(111242)	401.54004	866	1013+21	460.3 440.6	9/1/0-01/0	#1.6+44 	15.2×15 15.5×15	18.5 ± 1.6 18.6 ± 1.2
SS-Cu-NUS SHILL HIP	30110	117+31	2364 E4 00 5 m 3.1	(Mileto	With the	888.8 + 28.9 143.8 + 16.8	201+20) (0.1+20.7	186a33 165a37	meets.
Ni-Culligh Ma steel							1228+818	HHAD	
Nich Hilt			30			1011+011	4:94:03	3.71+9.90	
Tirefra (internal conditions) Trackles (STF)			30			473,4 + 44,5			
		11.00		701 × 486	366 - 762		3.2 - 10.1	11-43	
		786+353			111111111111111111111111111111111111111		10 Fe 2.1	62+63	
Trivial's rist, Explorer Booling Truckly a			358.4 x 45.2	_		137.8 + 31.5	- Sarras		
							23.5 + 1.4	310+13	
Triction in Extense in Compression		1983+182					1.0	17	

How to make the SUS/Nb joint: HIP (Hot Isostatic Pressing)



Welding on the END groups

Successfully tested the Nb/SUS Joint at STF0.5

Summary

- The Nb/SUS joint has been successfully tested at STF0.5. It is leak tight at He-II, which is a great step for the this technology.
- The material property of the Nb/SUS joint which sandwiches thin copper material could satisfy the Japanese high
 pressure regulation request.
- This joint technology opens to use stainless steel material for the He-vessel, which will guarantee the safety more and
- reduce the cavity dressing cost.