A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Neumann, A.

Paper Title Page
TUPPO001 SRF Gun Development for an Energy-Recovery Linac Based Future Light Source 164
 
  • T. Kamps, W. Anders, A. Frahm, J. Knobloch, O. Kugeler, A. Neumann, T. Quast, M. Schenk, M. Schuster
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • M. Dirsat
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • P. Kneisel
    JLAB, Newport News, Virginia
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
  • J.K. Sekutowicz
    DESY, Hamburg
  • J. Teichert
    FZD, Dresden
  • I. Will
    MBI, Berlin
 
 

In this paper we describe the R&D roadmap at HZB for the development of a high-brightness, high average current SRF electron gun for an energy-recovery linac based synchrotron radiation source.

 
TUPPO017 BERLinPro: a Prototype ERL for Future Synchrotron Light Sources 223
 
  • W. Anders, M. Abo-Bakr, T. Kamps, J. Knobloch, O. Kugeler, B.C. Kuske, A.N. Matveenko, A. Meseck, A. Neumann, T. Quast
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

The HZB (previously BESSY) was the first institution in Germany to build and operate a dedicated synchrotron light source (BESSY I). About 10 years ago BESSY-II, a third generation synchrotron light source, was commissioned. Presently, HZB is developing a design for a future multi-user light source as a successor to BESSY II and to enable "next-generation" experiments. Such a facility will be based on the energy-recovery-linac (ERL) principle. Although ERL facilities exist for the IR and THz range their moderate parameters (current, emittance, energy) are insufficient for x-ray sources. HZB is therefore proposing to build a prototype ERL facility (BERLinPro) that will demonstrate high current and low emittance operation at 100 MeV. BERLinPro is intended to bring ERL technology to maturity so that it can be employed for x-ray light sources. This paper presents an overview of the projects and the key components of the facility.

 
TUPPO053 Manipulating the Intrinsic Quality Factor by Thermal Cycling and Magnetic Fields 352
 
  • O. Kugeler, W. Anders, A. Frahm, S. Klauke, J. Knobloch, A. Neumann, D. Pflückhahn, S. Rotterdam, M. Schuster, S. Voronenko
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

For CW applications of superconducting cavities, obtaining a high quality factor is an important issue, since the required cryogenic power drops inversely proportional to Q0. Q0 is limited by BCS-losses and static losses, i.e. impurities and trapped magnetic flux. With sufficient magnetic shielding for TESLA type cavities, typical values of 2*1010 are being achieved at 1.8K operating temperature. The flux trapping was monitored by cooling the cavity at different ambient magnetic fields. In another experiment we have observed a significant increase in the Q0 value of up to 50% when subjecting the cavity to an additional cryogenic cooling cycle. Quantitative results are being presented and possible explanations for the effects are being discussed.

 

poster icon

Poster

 
THPPO046 Warm Test of a Modified TTF-III Input Coupler up to 10 kW CW RF-power 683
 
  • O. Kugeler, W. Anders, A. Frahm, S. Klauke, J. Knobloch, A. Neumann, M. Rohloff, M. Schuster
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

The TTF-III input coupler was designed for pulsed operation at average power levels up to 5 kW. For CW-applications, higher power levels are desirable. Previous investigations have identified the connection between 4K and 78K section as the bottleneck for maximum usable power level. We have modified this section of the coupler by including a gas cooling. This setup was tested in a coupler-test-stand at room temperature. We have achieved stable operation at power levels up to 10kW which is sufficient for the field levels that are to be reached in the BerlinPro ERL. The results can be regarded as a worst case scenario, since the heat conductivity of all involved materials is rising significantly upon cooling to operating temperatures.

 

poster icon

Poster