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Abstract 
Experimental method to evaluate the performance of a 

superconducting RF (SRF) cavity is through low power 
and high power measurements without a beam load. The 
most popular formulae in a pulsed mode measurement are 
for square-wave incident power. In practice, incident 
power may not be exactly squared. To understand the 
cavity behavior and performance more accurately, in this 
paper, the SRF cavity’s measurement equations for an 
exponentially decayed and pulsed incident power are 
developed from a series equivalent LCR circuit. The 
analytical result can be directly compared with the 
experimental data of a SNS cavity obtained from the 
Cryomodule Test Facility (CMTF) at Jefferson Lab. 

INTRODUCTION 
RF superconductivity is an increasingly important 

branch of accelerator physics and technology because of 
its high accelerating performances and low operating cost. 
The low power and high power RF measurements, when 
after the cavities were assembled in cryomodule and 
before a beam is run through, are necessary steps to 
estimate the SRF cavity performance. At present, one-port 
cavity’s measurement equations are the most popular used 
for a pulsed incident power. 

The stability of the phase and amplitude during the flat 
top of the accelerating pulse are very important for the 
pulsed mode linear accelerators. To understand the cavity 
behavior or to control cavity’s phase and amplitude more 
accurately during the cavity’s measurements or during the 
beam operation, a set of two-port cavity’s measurement 
equations has been developed by using a series equivalent 
LCR circuit [1]. 

In practice, the incident power wave may not be exactly 
squared pulse due to the capacitor discharge in the 
klystron PFN, instead be an exponential decayed pulse. To 
understand cavity behavior and performance more 
accurately, in this paper, the cavity’s equations for an 
exponentially decayed and pulsed incident power are 
developed further.  

EQUIVALENT CIRCUIT MODEL 
A two-port cavity with input and output couplers can be 

equivalent to either a parallel or a series resonance circuit. 
The series circuit is comparatively simpler to derive for 
cavity equations when no beam loading, as shown in Fig. 
1. Assuming the impedance of source and load are real 
and given by RG and RL, and Rc, L, C are the resistance, 
inductance and capacitance of the SRF cavity. E is the 

equivalent generator voltage related to the incident power 
Pin with a frequency of ω. In high frequency application, 
the harmonic time structure is much less than the pulse 
modulation scale by several orders (10-6 for SNS case). So 
the cavity accelerating gradient Eacc or voltage Vc can be 
related to the circuit current I(ω,t): 
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Here d is effective accelerating length. 

 
(a) Equivalent circuit of a two-port cavity system. 

 
(b) Alternative form of the circuit (a) for RF Switch On. 

 
(c). Alternative form of the circuit (a) for RF Switch Off. 

Figure 1: Equivalent circuits of a two-port cavity 
coupling system in transient state. 

 
Normally, the cavity’s parameters are defined at the 

cavity’s resonance frequency ω0. In following sections, 
the label of (t) is used to denote the physical quantity at 
ω=ω0. Note that: LC/12

0 =ω , the cavity stored energy U 
is: 
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The cavity’s emitted power Pe, dissipated power Pd and 
transmitted power Pt are: 
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The cavity’s intrinsic quality factor Q0 is: 
)(1)()( 0000 ccd CRRLtPtUQ ωωω === ,                 (4) 

The external quality factor Qe of the cavity fundamental 
power coupler (FPC) is: 
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The external quality factor Qt of the cavity field probe 
(FP) or a HOM coupler is: ____________________________________________ 
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The cavity FPC coupling coefficient βe and the FP 
coupling coefficient βt are defined as: 
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The cavity loaded quality factor QL is: 
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The cavity (circuit) shunt impedance R is: 
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Normally the R/Q0 is obtained by a cavity simulation 
code and written as R/Q. Based on above equations, the 
equivalent circuit parameters can be expressed with the 
cavity parameters as: 
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CAVITY MEASUREMENT FORMULAE 
Generally a phase lock loop (PLL) is used in the 

measurements, so ω  =ω0. For open-loop condition, please 
refer to reference [1].  

A. RF Switch On 
For a pulsed incident power with an exponentially 

decay in the form of Pin(t)=Pinexp(-2αt),  here α is a 
constant, the equivalent voltage is: 
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The circuit current I(t)’s differential equation is: 
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Using the slowly-varying amplitude approximation [2] 
and the RF switch-On boundary condition, the solution of 
the above equation is: 
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Note that,

Gin RtEtP 4)()( 2= from reference [3], the 
above equation (13) becomes: 
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Then the cavity dissipated power Pd(t) is: 
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The transmitted power Pt(t) is written as: 
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The cavity’s transmission coefficient T is: 
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The cavity’s emitted power Pe(t) is: 
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At this state, the emitted power here has no physical 
meaning. The cavity’s stored energy is: 
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Combining equations (1), (2) and (16)-(18), the cavity 
accelerating gradient can be written as: 
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         (20) 
The reflected power Pr(t) is: 
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B. RF Switch Off 
After a pulse length of τ0, the incident power Pin=0. 

This means the E(t)=0 as shown in Fig. 1 (c). Then the 
circuit differential equation becomes: 
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Using initial and I(t→+∞)=0 boundary conditions,  and 
the slowly-varying amplitude approximation, the circuit 
current I(t) can be solved: 
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The cavity’s dissipated power Pd(t), transmitted power 
Pt(t) and emitted power Pe(t) are: 
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The stored energy change is:               
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The reflected power now becomes emitted power which 

can be measured and has the physical meaning: 
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According above results, the Eacc is: 
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From equation (25) and (27), we found 
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Here k=log(e)·(ω0/QL)=0.4343ω0/QL, b=log(QtPt(τ0)/Qe) 
are constants. This equation can be used to exactly 
measure the loaded QL at pulse mode by fitting the slop of 
equation (29). We can also measure the ratio of emitted 
power Pe and transmitted power Pt after the RF switch off:  
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If the measurement circuit is carefully calibrated, the K 
constant can be used to approximate the FP coupling:          

Qt=QLK2                                                           (30) 
The incident power used to measure the SNS cavities at 

the CMTF in JLab was a decayed pulse. After fitting it 
into the equation (11), we fund the decay rate is α=1/3.84 
(ms)-1. The measurement data used in this analysis were 
taken from the medium beta No. 8 cryomodule, cavity #2 
measured at 9:36AM on April 8, 2004. Substituting this α 
and Pin=216kW into equations (16), (20), (21), (25), (27), 
and (28), we find that the analytic results of the reflected, 
transmitted power can fit the test dada very well as shown 
in Fig.2. The discrepancy in the reflected power near the 
end of the RF pulse could be a clue of the Lorentz force 
detuning which this analysis doesn’t include. The major 
discrepancy is on the Eacc, the analytical data is about 
3.7% lower than the measured data at the top. The test 
data was calculated online in the data acquisition system 
using the Labview, in which the one-port measurement 
equations were implemented [4].  

CONCLUSION 
The two-port RF cavity’s equations, developed by a 

series LCR equivalent circuit, can accurately describe the 
cavity electric behaviors under pulse incident power mode. 
These equations can be used to measure some SRF 
cavity’s parameters, except cavity instinct quality factor 
Q0 when the FPC is heavily over-coupled. The two-port 
equations can be simplified into one-port cavity equations. 

The cavity stored energy change dU/dt is the cause of 
the reflected power, emitted power and transmitted power 
transients. A general case of measurement formulae with 
exponential decayed incident power has been developed 
and could be used in the CMTF type of experiments. A 
special case is interesting. When α=ω0/(2QL), the incident 
power decay is just fast enough that the cavity will behave 
like detuned, no RF power can be input into the cavity. 
Although a faster decay than this rate can make a 
difference, the power decay in these rates could not 
happen in practice. 
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Figure 2: SNS medium beta cavity M082 test data in JLab 
CMTF and comparison with the analytic fitted data. The 
Eacc(Test) was calculated by one-port measurement 
equations. 
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