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Abstract 
Multiscale mechanisms of SRF breakdown and the 

dependence of the quality factor Q(H0) on the rf field 
amplitude H0 are discussed. We first consider a basic 
nonlinear dependence of the surface resistance Rs on the 
rf screening current density J, which becomes crucial at rf 
field of the order of the thermodynamic critical field Hc

Nb 
∼ 200 mT. The current-induced rf pairbreaking in the 
clean limit results in a quadratic field correction to Rs(H0) 
at low H0 and an exponential increase of Rs(H0) at H0 > 
THc/Tc. The effect of the nonlinear Rs(H0) on the rf 
thermal breakdown is adressed. The field dependence of 
Rs(H0) reduces the breakdown field Hb below Hc and 
increases the medium and high field Q slopes. Then a 
model of nonuniform thermal breakdown caused by 
macroscopic hotspots on the cavity surface is proposed. It 
is shown that hotspots expand as H0 increases, resulting in 
additional mechanism of field dependence of Q(H0), 
which increases the Q slope and reduces Hb.    

INTRODUCTION 
The quality factor Q = G/Rs of high performance 

superconducting cavities for particle accelerators is 
determined by the small surface resistance Rs at low 
temperatures T for which the role of extrinsic factors like 
current blocking grain boundaries and other surface 
defects is greatly reduced [1-4].  The fundamental limit of 
Rs is set up by the low frequency BCS surface resistance:  
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where ∆ is the superconducting gap, and A is a function 
of superconducting parameters and the mean free path  
due to impurities, and Ri is a temperature independent 
residual resistance [5]. Basically, RBCS is due to the Joule 
heating of thermally activated normal quasiparticles by 
the rf electric field E(x,t) = µ0ωH0λe-x/λsinωt induced by 
the TM01 magnetic field Ha(t) = H0cosωt parallel to the 
cavity surface. For GHz frequencies ω << ∆ at which Nb 
cavities operate, E(x,t) and the screening supercurrent 
density J(x,t) = (H0/λ)e-x/λcosωt are localized in a narrow 
surface layer determined by the static London penetration 
depth λ ≈ 40 nm. Recent advances in the cavity 
technology have resulted in large grain Nb cavities with 
very high breakdown field Hb ≈ 180 mT close to the 
thermodynamic critical field Hc(0)  ≈ 200 mT of Nb. Such 
fields induce J close to the fundamental depairing limit Jd 
= Hc/λ for which the linear response BCS resistance (1) 
obtained for J << Jd becomes inadequate. In this work we 

consider how the quasistatic dependence of Rs(J) on J due 
to the BCS pairbreaking affects rf thermal breakdown and 
the behavior of Q(H0) at intermediate and high fields. We 
also consider a peculiar nonlinearity of Rs(H0) due to 
inhomogeneous thermal breakdown ignited by localized 
hotspots. The account of these mechanisms can 
significantly improve the agreement of the thermal 
feedback model with the observed Q(H0) curves.         

NONLINER BCS RESISTANCE 
We consider Rs for clean type-II superconductors 

focusing on the small density of thermally-activated 
quasiparticles n(T,J) which control Rs. We do not address 
here effects of impurity scattering and mechanisms of 
energy relaxation described by complex kinetic equations 
for quasiparticles and phonons. Instead, we calculate n(J) 
using the superconducting energy spectrum in a current-
carrying state, as shown in Fig. 1: 
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where the superconducting gap ∆ is unaffected by current 
at T << Tc, vF and pF are the Fermi velocity and 
momentum,  vs = J/en0 is the superfluid velocity, - e is the 
electron charge, and n0 is the total density of electrons in 
the conducting band [6].  
 

 
 
Figure 1. Electron and hole branches of the quasiparticle 
spectrum ε(p) in a current-carrying state. Tthe instantaneous 
ε(p,t) in rf field with ω << ∆ oscillates between two tilted 
branches with the effective gap ∆eff = ∆ - vspF. 
 
The density of thermally-activated quasiparticles n(J) can 
be calculated by integrating the Boltzmann distribution 
function, exp[-ε(p)/kBT] over the momentum space: 
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where β(x,t) = β0exp(-x/λ)cosωt,  θ is the angle between 
vs and pF in Eq. (1), neq(T) is the equilibrium quasiparticle 
density, and the parameter β0 quantifies the effect of low-
frequency current on thermal activation: 
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Here vs is expressed via the rf field amplitude H0 and the 
thermodynamic critical field Hc = φ0/23/2µ0λξ,  ξ = vF/π∆ 
is the BCS coherence length, and φ0 is the magnetic flux 
quantum. The rf field thus significantly increases the 
thermally-activated electron density in Eq. (3) if β0 ∼ 1, 
that is, H0 ∼ THc/Tc. At low temperatures this happens at 
fields much smaller than Hc, for example for Nb at 2K, 
kBT/∆ ∼ 0.1, the BCS nonlinearity becomes important for 
H0 ∼ 20 mT. The reason is that the last term in Eq. (2) 
reduces the gap in the spectrum from ∆ to ∆eff(vs) = ∆ - 
pFvs, which vanishes at the critical velocity vc = ∆/pF 
above which superconductivity is suppressed by current 
pairbreaking effects [6]. If expressed in terms of rf field, 
this condition can be written in the form H0 > (23/2/π)Hc ≈ 
0.9Hc ≈ 180 mT for Nb. Manifestations of rf current 
pairbreaking in the nonlinear surface impedance and Rs of 
clean superconductors were discussed in [7,8]. 
 

Nonlinear BCS surface resistance 
We now calculate the instantaneous Joule power 

dissipated in the surface layer of rf field penetration, q(t) 
= ∫σ(vs)E2(x,t)dx, where the nonlinear conductivity σ(vs) 
is proportional to the normal quasiparticle density n(vs). 
Because n(vs)/n0 ∝ exp(-∆eff/kBT) is exponentially small, 
there is no coupling between the rf electric field E(x,t) and 
n(vs) which are determined independently by the 
supercurrent density J(x,t) and the rf field H0cosωt. In this 
case the general linear dependence of σ(vs) on n(vs) can 
be written in the form, σ(vs) = σBCSn(vs)/neq, so that for 
weak rf currents (β0 << 1), the quasiparticle density n 
equals the equilibrium density neq, and the σ(vs) reduces 
to the linear BCS conductivity. Hence, 
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where the first factor e-2x/λ accounts for the screened 
profile of E2(x), the factor sinh[β(x,t)]/β(x,t) accounts for 
the nonuniform distribution of normal quasiparticles n(β) 
as a function of the driving parameter βa(t) = β0cosωt, and 

RBCS is the low field BCS surface resistance, so that q(t) = 
RBCSH0

2sin2ωt for weak fields (β0 << 1). Performing 
integration in Eq. (5), we obtain 
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Averaging Eq.(6) over the rf period, we calculate the 

mean rf power <q>, and then the nonlinear rf surface 
resistance Rs(H0) = 2<q>/H0

2: 
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where τ=ωt. Eq. (7) defines Rs as a function of H0 both for 
weak and strong fields. For β0 << 1, expanding sinh(x) in 
series gives the low field Rs = (1+β0

2/48)RBCS: 
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Eq. (8) coincides with the result obtained by solving a 
kinetic equation for quasiparticles to the accuracy of a 
small logarithmic correction [8]. The pairbreaking 
nonlinearity becomes more pronounced as T decreases 
and β increases. For β0(T)>1, the main contribution to the 
integral (7) comes from a narrow vicinity of the end 
points τ = 0 and τ = π. Then Eq. (7) results in Rs(H0) 
exponentially increasing with the rf field: 
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Figure 2: The nonlinear Rs(β0) calculated from Eq. (7). 

 
The full dependence Rs(β0) calculated from Eq. (7) is 

shown in Figure 2 for the range of β0, which corresponds 
to H0 from 0 to ≈ 160 mT for Nb at 2K. In this case the 
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BCS nonlinearity can double Rs at H0 ≈ 100 mT as 
compared to RBCS. For high fields, the surface resistance 
Rs ∝ exp[-∆eff(H0)/kBT] exhibits the Arrhenius exponential 
temperature dependence with a reduced field-dependent 
gap ∆eff = (1 - πH0/23/2Hc)∆ [6-8], which vanishes at the 
pairbreaking field of H0 = 23/2Hc/π as shown in Figure 1.  

THERMAL RF BREAKDOWN 

Uniform thermal breakdown 
The exponential temperature dependence of Rs(T,H0) 

provides a strong positive feedback between the rf Joule 
power and heat transport to the coolant, resulting in 
thermal instability above the breakdown field Hb. The 
thermal breakdown model [9] is based on the analysis of 
the heat balance equation for the temperature Tm(H0) of 
the cavity surface exposed to rf field: 
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Here the left hand side is the rf Joule power and the right 
hand side is the heat flux to the coolant through the cavity 
wall of thickness d, where α is the Kapitza thermal 
conductance between Nb and the coolant held at the 
temperature T0, and κ is the thermal conductivity. As 
shown in [9], Tm(H0) slightly increases from T0 to the 
maximum value Tm ≈ T0 + T0

2/∆ as H0 increases from 0 to 
Hb, but for H0 > Hb, stable solutions of Eq. (10) disappear, 
which indicates thermal runaway.  

 

  
 
Figure 3. An example of Q(H0) curves calculated for the 

linear BCS resistance and the nonlinear Rs given by Eq. (7) for 
Nb cavity with the parameters given in the text.  

 
To see the effect of the BCS pairbreaking on thermal 

breakdown, we calculated Q(H0) for the linear RBCS and 
the nonlinear Rs(H0). An example of numerical solution of 
Eqs. (1), (7) and (10) for Nb is shown in Fig. 3 for 2K, d = 
3mm, κ = 20 mW/mK, α = 5 kW/m2K, RBCS = 10 nΩ and 
Q(0) = 1010. For Ri = 0, the thermal feedback model 
predicts the breakdown field [9] 
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giving Hb0 ∼ 300 mT, well above Hc = 180 mT for Nb 
(here e = 2.718). Therefore, if only the linear RBCS(T) is 
taken into account, this cavity would be stable against 
thermal runaway up to the fields H0 ≈ Hc at which the 
surface current density reaches the depairing limit and a 
superconductor becomes absolutely unstable against 
vortex penetration. However, the account of the BCS 
pairbreaking reduces Hb below Hc as evident from Fig. 3. 
In this case the cavity is stable against vortex penetration, 
but unstable against uniform thermal breakdown. Another 
manifestation of the field dependent Rs(H0) is that the 
medium and high field Q slopes are significantly 
increased as compared to the linear RBCS.      

 

Nouniform thermal breakdown due to hotspots. 
The analysis of the previous sections addressed a 

uniform surface resistance and a global thermal instability, 
which occurs simultaneously over a significant portion of 
the cavity surface (at the equatorial region of the highest 
rf field). However, such idealized instability hardly occurs 
in real cavities, as has been shown by thermal mapping, 
which revealed significant localized sources of dissipation 
(hotspots). Such hotspots cause local temperatures peaks 
of order 0.1-0.3K in macroscopic regions [2-4], as shown 
in Fig. 4. Given the exponential temperature dependence 
of RBCS, the hotspots can locally increase rf dissipation by 
orders of magnitude. Furthermore,  
• Hotspots can reduce the global breakdown field 
because they ignite local thermal quenches [10], which 
then propagate over the cavity surface. 
• Hotspots can significantly increase the medium 
and high-field Q slopes even for the linear BCS surface 
resistance, thus masking the fundamental BCS 
nonlinearity due to rf pairbreaking. 

 
 
Figure 4. Cavity surface with hotspots (dark grey) caused by 

smaller defects of radius r0 (black). 
 
To address these points we consider a steady-state 

temperature distribution T(x,y) along the cavity surface 
described by the 2D thermal diffusion equation [10]: 

H(t) 

coolant

d 

2L 

2r0 
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Here T(x,y) is averaged over the cavity thickness, αf = 
α/(1 + dα/κ) is the effective thermal impedance of the 
cavity wall, and q = Rs(T,H0,r)H0

2/2 is the rf power which 
can depend not only on T, but also on the position r along 
the surface. For uniform T, Eq. (12) reduces to the heat 
balance equation (10). 

Now we consider what happens if there is a surface 
domain of radius r0 where the rf power q is locally 
enhanced by a defect. Such defects could be grain 
boundaries, which facilitate local vortex penetration, 
normal precipitates, nonuniform patches of the oxidized 
Nb surface or surface steps, which cause local flux 
concentration [2]. Then the Joule heating term in Eq. (12) 
can be written in the form, q(r,T) = q0(T) + δq(r,T), where 
q0(T) is the uniform Joule power, and  δq(r,T) is the extra 
power localized in a small defect region of radius r0. 
Likewise, T(x,y) can be written as T(x,y) = Tm +  δT(r), 
where Tm satisfies the uniform heat balance condition 
q0(Tm,H0) = αf(Tm – T0), and δT(r) is the temperature 
disturbance due to defect. We consider here weak 
hotspots, δTm < kBT0

2/∆, for which the nonlinear Eq. (12) 
can be linearized with respect to the small δT: 
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Here q0
/ = ∂q0/∂T, and all parameters are taken at T = Tm. 

The cylindrically symmetric solution of Eq. (13) is: 
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where K0(x) is a modified Bessel function, ρ = (r0

2 + r2)1/2, 
r0 << L,  Γ0 is the total extra power generated by the 
defect, and L is the length, which quantifies the spatial 
extent of the temperature disturbance in the hotspot: 

 

f
h

f

h dL
q
LL

α
κ

α
=

′−
= ,

/1 0

  (15) 

 
Here Lh is the lateral thermal diffusion length in the 
absence of the Joule heating. For d = 3mm,  κ = 20 
W/mK, αf = 1 kW/m2K, we obtain Lh ∼ 8 mm. The length 
L is affected by Joule heating, which always increases L 
as compared to Lh. In fact, L(H0) diverges if H0 → Hb 
because q0

/(H0) → αf. For the linear RBCS(T), we have q0
/ 

≈ H0
2RBCS(Tm)∆/2kBT2, so the term 1- q0

//αf in Eq. (15) 
can be written as 1 – f(H0)H0

2/Hb
2, where f(H0) varies 

from 1/e at H0 << Hb to 1 at H0 → Hb. We illustrate 
qualitative effects of hotspots on the high-field Q slope 
for the linear RBCS at H0 ∼ Hb, in which case 
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Here L is the radius of a hotspot on the uniform 
background Tm(H0), as shown in Figs. 4 and 5. 
 

 
Figure 5. Normalized temperature distributions in hotspots 
produced by the same defect for different rf fields. 
 
 From Eq. (16) it follows that: 
1. The hotspot radius L(H0) can be much greater than 

either the defect size r0 and the thermal length Lh. For 
example, L ≈ 3.2Lh ≈ 25.6 mm for H0 = 0.95Hb and the 
parameters used above. Since L is independent of r0, 
even a small defect can cause a hotspot much greater 
than the wall thickness d. 

2. L(H0) increases as H0 increases, diverging at Hb. 
Indeed, L is determined by the balance dκδT/L2 = (αf – 
q0

/)δT between lateral heat diffusion and the difference 
between the heat flux to the coolant αfδT and the Joule 
power q0

/δT. As H0 approaches Hb, the terms αf and q0
/ 

nearly compensate each other, so it takes more area L2 
to transfer heat form a local source to the coolant. The 
field dependence of L(H0) results in a new mechanism 
of field dependence of the global resistance Rs. 

To address the effect of hotspots on Rs we introduce the 
dimensionless parameter η which quantifies the extra 
power generated by a defect: 
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Two terms in the parenthesis represent a local 
enhancement of the BCS factor A by δA in Eq. (1) and a 
local field enhancement in the region of radius r0, 
respectively. We consider here only weak local heat 
sources with η << 1. Notice that for Lh ∼ 8mm, all defects 
with r0 < 2mm are weak heat sources even for strong local 
inhomogeneity, δA ∼ A or δH2 ∼ H0

2. For r0 << L, Eq. (14) 
gives the maximum δTm in the hotspot: 
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The total extra rf power Γ produced by a hotspot can be 
obtained by integrating Eq. (13) over the surface:     
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Summing up Eq. (19) over non overlapping hotspots, we 
obtain the total dissipation RsgH0

2/2 and hence the global 
surface resistance Rsg: 
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where g = <η>πNhLh

2, Nh is the number of hotspots per 
unit area, <η> is the mean value of η, and Hb0 is the 
breakdown field for the uniform portion of the cavity. 
Hotspots can make Rsg dependent on H0 even for low 
fields if H0 ∼ Hb0 << Hc. From Eqs. (10) and (20) we 
obtain the following parametric dependence of Q(H0): 
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where θ = (Tm – T0)∆/kBT0

2, and u(θ) = θexp(1 - θ). Here 
H0(θ) is maximum at θ = 1, which defines the global 
breakdown field Hb reduced by weak hotspots (g << 1): 
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Figure 6. Q(H0) for the different values of g in Eq. (21): 0 

(uniform breakdown), 0.1 and 0.3.  
 
Q(H0) curves calculated from Eq. (21) are shown in 

Fig. 6. It is evident that hotspots increase the Q slope 
because hotspots expand as H0 increases, resulting in 

more rf dissipation at higher fields. The effect of this 
macroscopic mechanism on Q(H0) appears similar to that 
of the BCS nonlinearity shown in Fig. 3. Additional 
vortex dissipation in hotspots above the penetration field 
Hp produces kinks on Q(H0) curves and large high field 
Q- slope at H0 > Hp similar to those observed in [11].      

DISCUSSION 
Both mechanisms of the field dependence of Rs(H0), 

considered in this paper manifest themselves in a 
significant increase of the medium and high field Q slopes 
and a reduction of the thermal breakdown field Hb below 
Hc. Although the BCS pairbreaking nonlinearity is 
controlled by the nanoscale rf surface layer, while hotspot 
mechanism is basically macroscopic, their manifestations 
in the behavior of Q(H0) appear qualitatively similar. 

Recent comparison of Q(H0) curves for cavities from 
multiple sources with the thermal feedback model based 
on Eq. (7) has shown that the nonlinear BCS model does 
capture many essential features of Q(H0) at frequencies < 
1.5GHz [11]. In particular, the use of Eq. (7) can 
significantly improve the agreement of the thermal 
feedback model with experiment as compared to RBCS(T). 
However, to distinguish the pairbreaking effects from 
hotspots of grain boundary effects, measurements of 
Q(H0) should be combined with T-map measurements, in 
particular before and after baking. For instance, reduction 
of the high field Q slope is consistent with the assumption 
that baking may remove or ameliorate some of hotspots.    

Application of Eq. (7), obtained for clean type-II 
superconductors, to Nb cavities critically depends on the 
information about impurity scattering in the 40 nm 
surface layer. Such data are still lacking, though first 
measurements of impurity profiles using atom probe 
tomography [12] and SXRD [13] were recently reported. 
Generally, impurity scattering reduces the pairbreaking 
nonlinearity of Rs(H0), so making the Nb surface layer 
dirtier may reduce Q slope and increase Hb. Such clean to 
dirty transition may be responsible for reducing Q slope 
after baking, particularly for big grain Nb cavities with 
high Hb ≈ 180 mT [3].             
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