
PANIC, A SUITE FOR VISUALIZATION, LOGGING AND NOTIFICATION
OF INCIDENTS

S. Rubio-Manrique, F. Becheri, G. Cuní, D. Fernandez-Carreiras, C. Pascual-Izarra, Z. Reszela,
CELLS-ALBA Synchrotron, Barcelona, Spain

Abstract
PANIC is a suite of python applications focused on

visualization, logging and notification of events occurring
in ALBA Synchrotron Control System. Build on top of
the PyAlarm Tango Device Server it provides an API and
a set of graphic tools to visualize the status of the declared
alarms, cre- ate new alarm processes and enable
notification services like SMS, email, data recording,
sound or execution of Tango commands. The user inter-
face provides visual debugging of complex alarm
behaviors, that can be declared using single-line python
expressions. This article describes the architecture of the
PANIC suite, the alarm declaration syntax and the inte-
gration of alarm widgets in Taurus user interfaces.

INTRODUCTION
ALBA[1], member of the Tango Collaboration[2], is a

third generation Synchrotron lightsource in Barcelona,
Europe. It provides synchrotron light since 2012 to users
in its 7 beamlines, with 2 more under construction.

PANIC is an Alarm System running on top of the
Tango Control System to provide periodic evaluation of
user-specified alarm formulas, automatic actions and
notification whenever formulas evaluate to True, logging
of the control system status when this occurs and later
monitoring and supervision of the evolution of the
system.

Elements of the PANIC Alarm System have been
deployed at ALBA[3] since the start of the construction
phase. Developed to provide stand-alone monitoring
during the vacuum installation of the accelerators it
evolved into a versatile system in which many tools
interact to provide not only a monitoring tool, but a
supervisor service on top of a Tango Control System.

Other Alarm Systems existed already in Tango. PANIC
was inspired on Elettra[4] (C++) and Soleil (Java) alarm
systems; but focused on exploiting the versatility of
python[5] to process rules on runtime, allowing operators
and engineers to develop complex logics in rules[6].

THE PANIC ECOSYSTEM
The PANIC Alarm System is completely integrated in

Tango[7]. Although it can work without a Tango
Database using files as configuration, it develops its
complete functionality when interacting in a complete
Tango Control System.

Figure 1: Architecture of the PANIC Alarm System.

The different elements that are part of a PANIC Alarm
System (Fig. 1) are:

• PANIC Api: Alarms Database API and rule
evaluator. Provides a unique view of the system and
coherence between all devices and UI's. It
encapsulates all the behavior that is later executed in
the User interface or Device Servers.

• PyAlarm Device Server: Tango Device Server that,
on top of the PANIC Api, executes alarm rules
periodically and trigger the configured actions.

• ProcessProfiler Device Server, a Tango Device to
inspect current performance of a linux system,
exporting memory and cpu usage of all running
processes to be used as source for Alarms.

• Festival Device Server: providing speech and pop-up
notification in user terminals.

• PANIC User Interface: manager of the PyAlarm
devices, editor of formulas and browser of the Tango
Control System from alarms point of view.

• PANIC Tau Toolbar: simple Alarm viewer, restricted
to alarms related to attributes shown in a running Tau
application.

• Taurus Search Bar: it provides a search engine that
indexes relationships between devices, attributes,
properties, labels and alias within Tango.

• MySQL Databases: instead of having its own schema
PANIC relies in databases of the Tango Control
System for configuration (Tango DB) and logging
(Tango Archiving DB).

• Snap Viewer: widget that browses the Tango
Snapshoting Database (developed by Soleil Institute)
where alarm logs and related attribute values are
stored.

• Alarm NoSQL database: alternative database for
unified configuration and logging, under
development by Max IV team.

Proceedings of PCaPAC2014, Karlsruhe, Germany FCO206

User Interfaces and Data Displays

ISBN 978-3-95450-146-5

243 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

• Alarm Web Reports, static HTML pages generated
by PyAlarm summarizing current status of all
variables related to the alarm.

ALARM FORMULAS EVALUATION
Formulas are evaluated by the Panic API using the

Fandango[8] library and the fandango.tango.TangoEval
Class. This object is a singletone for each process and
shares cache and all Attribute/Device proxy between all
threads.

Alarm formula syntax accepts simple value
comparisons, but also list comprehensions, regular
expressions and aggregating existing alarms:

• MAX_P: BL24/VC/VGCT-01/P1>3e-5
• ALARM_P: any([q in (ATTR_ALARM,) for
q in FIND(BL/VC/VG-*/P*.quality)])

• ANY_P: MAX_P or ALARM_P

Extended Syntax, Macros
Syntax available in formulas have been extended with

some methods called Macros. Those methods provide a
pre-parsing of the formula to execute in-place
replacement before executing the formula.

Some examples of macros available:

• FIND(regex): that replaces regexp by all attribute
names matching the regular expression.

• GROUP(regexp) : this allows to group many alarms
as a single one, it returns a boolean flag if any
matching alarm was activate in the last cycle.

• CACHE[attribute/alarm][-i]: returns access to the
previous values of an attribute, keeping a buffer of
size AlarmThreshold+1.

Extended Tango Attribute Name Syntax
Alarm formulas allow extended attribute names:
some/device/name{/attribute}{.FIELD}

Table 1: Examples of Using Extended Attribute Names

State (when no attribute is
given)

BL22/CT/EPS-PLC-01 ==
FAULT

.value (optional) BL22/CT/EPS-PLC-
01/CC1_AF.value > 1e-5

.time (attribute not
updated)

BL22/CT/EPS-PLC-
01/CPU_Status.time < (now-
60)

.quality (standard tango
qualities)

BL22/CT/EPS-PLC-
01/OP_WBAT_OH01_01_TC11.qu
ality == ATTR_ALARM

.delta (e.g. for an open
valve that just closed)

BL22/CT/EPS-PLC-
01/VALVE_11.delta == -1

.exception (matched when
the attribute is unreadable)

BL22/CT/EPS-PLC-
01/I_Dont_Exist.exception

.all (full attribute struct
with all previous fields
embedded)

[x.time<now-60 or
x.exception for x in
FIND(BL/PLC/01/*.all)]

To provide full Tango functionality with a compact
syntax the Alarms allow to express attribute names using
extensions (Table 1). Those extra fields provide extra
information from the device (even the type of exception
when are unreadable) that enable complex alarms.

Those extra fields are also parsed whenever macros and
regular expressions are used.

Triggering Automatic Actions from Panic
The syntax of Alarm receivers can be used to execute

commands in outer devices, this kind of operations can
trigger notification but also control actions. In the Table 2
example, a formula is used to automatically open a front-
end whenever protection systems[9] allow it, and
simultaneously notify beam-line scientists by pop-up.

Table 2: Example of Automated Front-End Opening
Using PANIC. In this example an alarm triggers a PLC
command and a pop-up notification in the beamline
computers.

Formula
bl/ct/plc-01/FE_AUTO and
host:10000/chan/ct/fe/value and
bl/ct/plc-01/BL_READY and not
bl/ct/plc-01/fe_open and not
bl/ct/-plc-01/fe_control_disabled

Receiver 1 ACTION(alarm:attribute,bl/ct/plc-
01/OPEN_FE,1)

Receiver 2 ACTION(alarm:command:test/notif/b
lmachine/popup,$ALARM,
$DESCRIPTION,15)

PYALARM DEVICE SERVER
Each PyAlarm Tango Device contains a unique thread

that evaluates a set of Alarm formulas written in python.
Alarms are stored in the Tango Database as Device
Properties: AlarmList for formula, AlarmReceivers for
notifications, AlarmSeverities for categorization and
AlarmDescriptions containing the message to be shown in
notification and UI's.

The PyAlarm thread will keep a continuous polling
thread (independent of Tango polling thread) evaluating
the set of alarm rules and, depending on the device
configuration, triggering notifications and actions when
the alarm formula evaluates to True; and later managing
Reminder, Reset, Acknowledge actions if the alarm state
oscillates, recovers to False or is acknowledged by user.

Notifications by email and file logging are embedded in
the PyAlarm device, while SMS, Speech and Popup
require external device servers or plugins.

Distributing Alarms between Servers
A single PyAlarm device server can group many

devices, but the threading configuration is unique to each
device. Grouping the devices by targeted attributes allows
to minimize attribute reading, as all formula evaluators
share cache and the last value read per attribute. A
reasonable balance should be kept to avoid massive

FCO206 Proceedings of PCaPAC2014, Karlsruhe, Germany

ISBN 978-3-95450-146-5

244C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

User Interfaces and Data Displays

Tango clients with thousands of connections from the
same machine.

PyAlarm Device Configuration
Parameters that are independent for each device are

controlled by 13 properties:

• AlarmList: each Alarm is unique for the whole
Tango Control System, the Panic API keeps
consistency between all PyAlarm devices.

• Enabled, PollingPeriod, AlarmThreshold, AutoReset:
All this integer properties will control the startup
delay of the device, the frequency of alarm
evaluation, the number of triggers required to
activate the alarm and time after which the alarm will
be auto-reset when the condition is not active
anymore.

• Reminder, AlertOnRecover, FlagFile, LogFile,
HtmlFolder: Those properties will control additional
notification and logging durint the Activation/Reset
cycle.

• CreateNewContexts, UseSnap: enable Alarm and
attribute values logging in the Tango Snapshoting
database. The list of attributes to be recorded for
each alarm is automatically generated from the
formula, but can be later modified by user.

• UseTaurus, UseProcess: Control how the access to
attributes is done, either using Taurus to choose
between polling and events or doing polling thread in
a background process to optimize speed.

PANIC GUI APPLICATION
The Panic GUI (Fig. 2) shows the list of active or

declared alarms. It provides several filters to search
alarms: by state (active/inactive), activation time,
severity, subsystem, receiver or historic values.

A text search is also provided that allow to locate
alarms by any of the attributes used in formula or words
used in description.

Figure 2: Alarm list and Alarm editor widgets.

For each alarm the menu allows to Reset or Disable the
alarm, edit it, modify the PyAlarm device configuration,
inspect the logging recorded in the Snapshoting database
and access the “Alarm Calculator”, a preview panel that

allows to execute any formula using the Alarm syntax to
preview the behaviour of the alarm when applied.

CONCLUSSION
The latest release of the PANIC Alarm System has

evolved into a complete system that is becoming one of
the main tool used by our operators and scientists. The
strong pillar of the system is the reliability of PyAlarm, in
operation for the last 6 years.

All the elements described in this paper are available in
the Tango Device Servers repository in Sourceforge;
thanks to the Tango collaborative effort now Panic is also
used by other Synchrotrons like Max IV. The main focus
in the next iterations will be further integration in Taurus
and Sardana[10] to achieve certain usage uniformity
between the several application involved.

It is still a fact that Tango has three different Alarm
Systems instead of a unique tool. It is motivated by the
three big families of developers (C++, Java, Python)
being naturally attached to their preferred language. But,
despite of having different rule-processing engines,
actually some contacts have been made to increase the
interaction between the three systems to allow notification
services, graphical applications and databases to be
combinable in the future.

ACKNOWLEDGEMENTS
The ALBA Accelerators division for the help in the

debugging and refinement of the PANIC tools.
A.Pearsson and A.Milán from Max IV institute in their
effort to adapt and extend Panic as a tool for machine
scientists.

REFERENCES
[1] ALBA website: http://www.cells.es
[2] TANGO website: http://www.tango-controls.org
[3] S.Rubio, et al. “Extending Alarm Handling in

Tango”, ICALEPCS'11, Grenoble, France (2011)
[4] Lorenzo Pivetta, “Development of the Tango Alarm

System”, ICALEPCS 2005, Geneva, Switzerland
[5] D.Fernández et al. “Alba, a Tango based Control

System in Python”, ICALEPCS'09, Kobe, Japan
(2009)

[6] S.Rubio et al., “Dynamic Attributes and other
functional flexibilities of PyTango”, ICALEPCS'09,
Kobe, Japan (2009)

[7] A.Götz, E.Taurel et al, “TANGO V8 – Another Turbo
Charged Major Release”, ICALEPCS'13, San
Francisco, USA (2013)

[8] Fandango website: http://www.tango-controls.org/
Documents/tools/fandango/fandango

[9] S.Rubio, et al. “PyPLC, A VERSATILE PLC-TO-PC
PYTHON INTERFACE”, PCaPAC'14, Karlsruhe,
Germany (2014)

[10] T.Coutinho et al., "Sardana, The Software for
Building SCADAS in Scientific Environments",
ICALEPCS'11. Grenoble, France (2011)

Proceedings of PCaPAC2014, Karlsruhe, Germany FCO206

User Interfaces and Data Displays

ISBN 978-3-95450-146-5

245 C
op

yr
ig

ht
©

20
14

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

