

Status of the Rare Isotope ReAccelerator Facility ReA

D. Leitner on behalf of the ReA team at Michigan State University

Outline

NSCL/FRIB Laboratory

- Introduction
- ReAcclerator facility
- Commissioning Results and Status
- First radioactive ion beam delivery

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

FRIB Accelerator Complex Subsystems

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

J. Wei, NA-PAC'13 FRYBA1, Slide 3

Isotope production reaction mechanisms [1]

Most post accelerator facilities are based on

ISOL –**Isotope Separator On-Line (target "spallation" or fission)**

- Light ion-induced "spallation" or fission of heavy targets
- Isotopes must diffuse from hot targets and effuse to an ion source
- Typical beams ~100-1000 MeV protons; typical targets Ta & UC
- Photofission using high power electron linac

National Science Foundation Michigan State University

Isotope production reaction mechanisms [2]

• In-flight heavy-ion fragmentation or fission on a light target

- Fragments of the beam are kinematically forward directed at ~beam velocity
- Rare isotopes are separated physically; no chemical dependence
- Typical heavy ion beams are ¹⁸O- ²³⁸U at 200-2000 MeV/u; typical targets Be or C

National Science Foundation Michigan State University

CCF Is The Only Facility In The World That Provides Fast, Stopped, And Reaccelerated Beams Of Rare Isotopes

National Science Foundation Michigan State University

In-flight Fragmentation Offers A Wide Variety Of Rare Isotopes

At the Coupled Cyclotron Facility at MSU (≈10 years of operations) more than 1000 RIBs have been produced and more than 870 RIBs have been used in experiments with > 90% availability

Average experiment: primary beam 120 hrs, several secondary RIB beam changes

ReA SC Post-Accelerator – 3 stages (41 SC SRF cavities)

Requirements : Variable energies 300keV/u – 12MeV/u					
Ionization efficiency for all elements	> 20 %	EBIT charge breeder + high efficiency linac			
Beam rate capabilities	10 ⁸ ions/sec	Hybrid EBIS/T charge breeder			
High beam purity		A1900, EBIT CB, Q/A			
Low energy spread, short pulse length	1keV/u, 1nsec	Multiharmonic external buncher and tight phase control in SRF linac			

Rare Isotope Beam Production

Rare Isotope Beam Thermalization: RIB Beams Gets Further Purified

MOPMA07, J.A. Rodriguez et al, "The D-Line Project at MSU"

Rare Isotope Beam Thermalization Station

ReA Design Choices: EBIT Charge Breeder

Charge Breeding In The EBIT Source

V

Axial potential well from the trap electrodes

Over-the-potential barrier injection

Continuous injection

Lower-the-barrier extraction

Pulsed extraction D. Leitner NA-PAC 2013, slide 13

EBIT Background Spectrum And Selection Of ³⁷K Charge States

Background ion intensities from the charge breeder in the region of interest are less than 1 pA

ReA Design Choices: RT-RFQ With External Buncher And High Efficiency SC-Linac

SRF LINAC

- ▶ 80.5 MHz RF frequency
- ► Flexible energy range (deceleration 300keV/u to maximum linac energy in small steps
- External multi harmonic buncher to minimize the longitudinal emittance

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Room Temperature Radio Frequency Quadrupole (RFQ)

- Pulsed operation (160kW, 25%)
- Energy Boost: 12 keV/u 600 keV/u
- 4-rod structure, 92 cells, 3.3 m long
- Buncher : 80.5MHz, 161MHz, (241.5 MHz)
- Nom 82 % beam capture measured

D. Leitner NA-PAC 2013, slide 17

Q. Zhao et al., PAC'07; D. Leitner et al, PAC'11; W. Wittmer et al., NA-PAC'13 (MOPSM07)

Compact Superconducting Linac With 2 Types Of Quarter Wave Resonators

- 7 β =0.041 cavities are in operation since 2010 with excellent performance and stability
- Routinely operated at 160% of the specified gradient

				_
-				
1		A		H
6	- P			1
				M.
1			71	
	•0.	10	1.1	
		-		
			1	

Measured Phase and Amplitude Stability				
Cavity	Phase Std dev (deg)	Amplitude Std dev (%)		
82	0.149	0.025 %		
84	0.207	0.009 %		
85	0.043	0.018 %		
88	0.14	0.013 %		
89	0.06	0.020 %		
91	0.248	0.046 %		

D. Leitner et al., SRF'2011

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Compact Superconducting Linac With 2 Types Of Quarter Wave Resonators

- Eleven β=0.085 cavities have been tested (all tested well above specifications)
- CM4 (FRIB prototype) 2015, novel bottom up design

- Cryomodule 3 will be installed and commissioned in the in 2014
- β=0.085 cavities were redesigned to reliably provide high gradient acceleration fields

FRYBA1, J. Wei et al, "Progress towards the Facility for Rare Isotope Beams" A. Facco et al., IPAC'2012

Diagnostic Systems Are Very Challenging For RIB Post-accelerators (Dynamic Range 10 pps To 10¹² pps)

Diagnostics

FC
Slit profile monitor

2

- 3 Viewer, MCP or crystals
- 4 Bunch lengths, timing
- 5 Slits, aperture
- 6 Attenuators
- 7 Detectors (decay, scattering, in beam)
- 8 MCP, TOF
- 9 Pepperpot
- 10 Emittance Scanner
- 11 Energy defining slits

12 BPM

ReA Beam Line Is Well Understood

Design compares well with the actual tuning parameters of the beam line

The ReA Linac (CM1+CM2) Was Characterized Using Stable Beams

- Absolute energy calibration of ReA using 992 keV Al(p, γ) resonance
- Linac was tuned in 2keV energy steps
- Measured energy spread of 0.5% FWHM is close to predicted value

CAESAR Detector Array

L. Ling-Ying et al., manuscript under preparation

MOPSM07, W. Wittmer et al.

MOPSM07, W. Wittmer et al.

MOPSM07, W. Wittmer et al.

Radioactive Ion Beam Measured In The ANASEN Ionization Chamber

First radioactive ion beam delivery to user 8/20/2013!

National Science Foundation Michigan State University

Summary

- ReA is the first post-accelerator coupled to a fragmentation facility
- The EBIT charge breeder provides high purity beams
- The SC cavities perform above specification and have been operated reliably since 2010
- Commissioning and final installations are progressing well, RIB beams below or close to the Coulomb barrier(light ions) will available for users in 2014
- The first radioactive ion beam was delivered to users in August of 2013
- ReA will serve as post accelerator for FRIB

Co-authors

D. Leitner^{1,2}, D. Alt², T. M.Baumann², C. Benatti², B. Durickovich¹, K. Kittimanapun², A. Lapierre², L. Ling-Ying, S. Krause², F. Montes², D. Morrissey², S. Nash², R. Rencsok², A. Rodriguez¹, C. Sumithrarachchi², S. Steiner², S. Schwarz², M. Syphers², S. Williams², W. Wittmer¹, X. Wu¹

¹Facility for Rare Isotope Beams, Michigan State University, East Lansing, MI 48824 USA

²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

