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Abstract 

In order to efficiently track charged particles over long 
times, most tracking codes use either analytic charge 
distributions or particle-in-cell (PIC) methods based on 
fast Fourier transforms (FFTs). While useful for 
theoretical studies, analytic distribution models do not 
allow accurate simulation of real machines. PIC 
calculations can utilize realistic space charge 
distributions, but these methods suffer from the presence 
of discretization errors. We examine the situation for 
particle tracking with space charge over long times, and 
consider possible ideas to improve the accuracy of such 
calculations. 

INTRODUCTION 
Space charge physics has been successfully 

incorporated into numerous computational particle-
tracking studies of linacs, accumulator rings, and rapid 
cycling synchrotrons. These space charge models have 
allowed the successful simulation of phenomena that 
would have been impossible otherwise. Particle-tracking 
simulations for these machines all involve following 
particle distributions over short to moderate time scales. 
With the emergence of ever-higher beam intensities, it is 
now necessary to incorporate space charge effects into 
simulations of storage rings [1]. Calculations for storage 
rings require tracking beams for far longer times than 
those in linacs, accumulator rings, or rapid cycling 
synchrotrons. These long time scales place severe 
requirements on the speed and accuracy of the physics 
models and call for innovative methods of solution. For 
example, Lie Algebraic methods have been used with 
great success in single particle tracking to provide fast 
symplectic high order maps for storage rings. Although it 
is difficult to conceive of full turn maps for collective 
effects, such as space charge, advances will be necessary 
to incorporate this physics reliably into storage ring 
applications. 

The problems of simulating space charge over long 
times arise partly from simplifications in the physics 
required to obtain a computational model and, more 
seriously, from the numerical properties of the model so 
obtained. From the physics perspective, a beam consists 
of many identical indistinguishable particles interacting 
quantum mechanically with each other and with their 
surroundings. In order to perform tracking studies, we 
make a series of approximations to arrive at a picture in 

which we treat the beam as a collection of distinguishable 
particles moving and interacting with each other and their 
surroundings primarily according to classical physics. 
Within this picture, space charge is the inter-particle 
Coulomb force, and its evaluation requires the solution of 
Poisson’s equation. 

Thus, even at the outset, space charge models represent 
a very simplified picture of reality. Their success in 
predicting and describing the physics of accelerators on 
short to intermediate time scales is some testimony to the 
validity of these approximations. However, for extension 
to long time scales, we must keep in mind that many other 
effects, such as lattice imperfections and nonlinearities, 
wake forces, neutral gas ionization and scattering, 
electron cloud interaction, intrabeam scattering, beam 
loss, and others may be important. These effects may be 
relatively unimportant at short or intermediate time scales, 
but critical at longer times. To study them in the presence 
of space charge, it is necessary understand and to mitigate 
the numerically induced noise and errors in the space 
charge models. The challenge of simulating space charge 
over long times lies in the representation of the beam 
distribution and the discretization of the problem. 

CHOICE OF PHYSICAL MODEL 
The first issue in space charge modeling is to determine 

what type of model contains physics sufficient to your 
needs. One criterion is the dimensionality of the model. 
1D longitudinal models are used in longitudinal beam 
dynamics codes and also in conjunction with 2D 
transverse space charge calculations in 3D tracking codes. 
2D transverse models, including bunch factor effects, are 
the most widely used for calculation in rings. If transverse 
properties vary longitudinally or transverse impedances 
are of interest, 2.5D models are necessary. These consist 
of a series of 2D model slices along the longitudinal 
direction that are connected by a common boundary 
condition. 2.5D models provide both the longitudinal and 
transverse space charge force components. All the above 
models are valid only for long bunches in which the 
bunch length greatly exceeds the beam pipe radius. 
Finally, there are full 3D space charge models. These are 
essential for short bunches, where the longitudinal and 
transverse dimensions are comparable, and are widely 
used in linac studies. Computational requirements rise 
steeply with the dimensionality of the model, so it is 
important to adopt the simplest model that contains the 
necessary physics. 

_______________________ 
* ORNL/SNS is managed by UT-Battelle, LLC, for the 
U.S. Department of Energy under contract DE-AC05-
00OR22725 
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REPRESENTATION AND 
DISCRETIZATION 

Important issues that limit the applicability of space 
charge models are their representation of the beam 
distribution and the numerical discretization of the 
problem. Because the space charge forces depend on the 
charge distribution in the beam, the representation of the 
beam distribution in a simulation is very important. One 
simple class of space charge models, called envelope or 
particle core models, represents the space charge 
distribution as a uniform ellipsoidal core that propagates 
according to the envelope equation. The tracked particles 
feel the space charge force due to the propagating core. 
This force is linear inside the core. Envelope models are 
computationally fast and easy to apply. They have been 
used to study halo generation by mismatched beams and 
also the approach to the half integer resonance. One 
limitation of such models is that a constant emittance is 
specified in the envelope and thus constrains the evolution 
of the core. Accordingly, envelope models are simple, but 
far from realistic. 

Conceptually, the opposite approach is to use the 
numerical distribution of tracked particles to provide the 
space charge forces. The implication in using this 
approach is that the tracked beam distribution realistically 
describes the actual beam distribution, which may require 
tracking many particles. Such methods, often called 
particle-in-cell (PIC) methods because of the techniques 
employed to evaluate the collective forces, are much more 
computationally intensive than envelope models and, as 
we shall see, they introduce discretization at more levels. 

An intermediate class of methods for handling space 
charge involves the use of analytic or smoothed 
distributions for space charge evaluation, where the 
parameters of the smoothed distribution are fitted to those 
of a tracked beam consisting of particles. Such hybrid 
methods can, in principle, enjoy the speed and simplicity 
of envelope models while having parameters that evolve 
with the tracked beam distribution. A disadvantage could 
be that, depending on the details of chosen analytic 
representation or smoothing function, important features 
of the tracked distribution may be lost. 

Any numerical space charge model will suffer from 
discretization error, but some methods are subject to more 
error than others. Time discretization is a feature of any 
space charge simulation, regardless of beam 
representation. While space charge forces act 
continuously in classical dynamics, simulations apply 
them as impulses, separated by single particle transport. If 
the time between impulses is too large, accuracy is lost. 
For example, nearby particles may become anomalously 
close in the single particle transport step. At the very 
least, it is necessary to include many space charge 
evaluations per betatron or synchrotron oscillation. 

An additional level of discretization occurs when using 
the tracked particles directly to provide the charge/current 
distribution. Real accelerator bunches typically have 108 – 
1014 particles, while accelerator simulations may use 104 – 

109 macroparticles, with the lower end of this range being 
typical on workstations or small clusters. The impacts are 
an increased graininess of the force distribution and an 
increased potential for large binary collisions. Both of 
these effects introduce noise, or diffusion, into the particle 
evolution. The problem of the enhanced binary collisions 
is often handled by introducing into the inter-particle 
force Green’s functions artificial smoothing parameters 
that reduce the force at close range. 

A final source of discretization in many PIC methods 
relates to the use of spatial meshes. The straightforward 
direct evaluation of pairwise forces between N particles 
requires O(N2) computational work. Faster O(~N) 
methods have been developed. The most popular of these 
methods involve the distribution of the particle charges to 
a selected set of mesh points. This is followed by the 
solution of the resulting potential or forces at the mesh 
points, and then the interpolation of the forces back to the 
particle locations. Computational meshes are used in 
multigrid methods and also in algorithms using fast 
Fourier transforms (FFTs). Many of these are described in 
Refs. [2] and [3]. The approximations in distributing the 
charges to the mesh points and then interpolating the 
resulting forces from the mesh points back to the particles 
introduce additional noise into the space charge 
calculation that can be seen in the motion of individual 
particles. This is illustrated in Fig. 1, where the horizontal 
motion of three particles, initially at (x,y) = (3,0), (0,0), 
and (0,3) mm, selected from a cylindrical constant density 
beam of radius 7 mm in a uniform focusing channel, is 
plotted over 1000 betatron oscillations at the bear tune. 
The space charge tune reduction here is about one third. 
The space charge solution is carried out using a 2D FFT-
based PIC solver. Without discretization noise, the 
amplitudes would remain constant. However, even with 
400000 particles in a 2D problem, the effects of noise in 
diffusing the individual particle orbits are soon apparent. 
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Figure 1. Horizontal motion of three particles in a uniform 
focusing channel with constant space charge, calculated 
using an FFT-based PIC algorithm. Without discretization 
noise, the amplitudes would remain constant. 

Within the realm of fast grid-based methods, techniques 
have been devised to reduce the noise by using the grid 
for evaluating the forces of distant particles and 
calculating the forces due to nearby particles pairwise [2]. 
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Another fast method that uses pairwise force evaluations 
for nearby particles eliminates grid-based discretization 
errors completely. The fast multipole method [4] expands 
the individual particle potentials as multipoles at the 
centers of a collection of square gridded cells containing 
the particles. These expansions are then shifted and 
accumulated through a hierarchy of coarser “parent cells” 
and the resulting totals are converted to Taylor series 
expansions as they are shifted backwards through the 
hierarchy of “child cells”. The result is a set of local 
Taylor series expansions for the potential and force within 
each starting cell. This method solves the N-body force 
evaluation to machine precision when enough terms are 
retained in the multipole and Taylor series expansions. 
Even so, the discretization effects of the time step and the 
numerical particle distribution remain. 

OPTIONS FOR LONG TIME SCALES 
Given the problems of properly representing the beam 

distribution and reducing the discretization noise, the 
question remains: What steps can be taken to extend space 
charge calculations reliably to long time scales? One 
possibility is the sledgehammer approach. It is possible to 
use smaller time steps, more particles, and finer meshes to 
reduce the level of noise due to discretization. This is 
feasible to some extent with the help of modern computer 
technology: clusters, GPUs, etc. Still, this approach is 
expensive and only delays the inevitable effects of the 
numerical noise. Another approach to reduce noise from 
discretization is to eliminate the discretization. At present, 
FFT-based methods are extremely popular for solving 
Poisson’s equation. The fast multipole method can 
eliminate grid discretization errors associated with FFTs. 
However, the effects of the graininess of the particle 
distribution and discrete time steps are still present. 
Another approach with grid-based methods is to study 
different binning or smoothing algorithms for distributing 
space charge from the numerical particle distribution to 
the grid. Like low pass filters, such methods can alleviate 
noise due to gridding and the particle representation. One 
example is the template method of Vorobiev (presentation 
in Ref. [1]) in which the binned point charges on the grid 
are replaced by smoothed elements. Simplified or analytic 
distributions, based on statistically calculated parameters 
of the macroparticle distribution, are also worth exploring. 
For example, Figure 2 shows the evolution of the vertical 
beam size in three different tracking calculations through 
the SNS MEBT. Two of the calculations were carried out 
using grid-based 3D space charge models (PICNIC and 
SCHEFF) in the Parmila code, and the third utilized a 
uniform ellipsoid with parameters taken from tracking a 
distribution with 10% as many particles as in the 3D 
calculations. The RMS beam sizes from the three methods 
are virtually identical, although the ellipsoidal calculation 
required only 20% as much computer time as PICNIC and 

40% as much as SCHEFF. Of course, these linac 
calculations are for short times, but similar hybrid models 
should be explored for calculations at long times. 

 
Figure 2. Vertical beam sizes from particle tracking 
calculations in the SNS MEBT. Space charge models 
include 3D PICNIC and SCHEFF PIC solvers and an 
ellipsoidal uniform density model with parameters set to 
those of a tracked distribution. 

We are exploring all of these approaches in the ORBIT 
Code. At present, we have completed writing and are now 
testing a fast multipole method package. The intent is to 
compare the speed and numerical noise of this method 
with those of our existing FFT-based PIC solvers. In the 
future we plan to develop a number of fast hybrid models 
for long time scale calculations. All of these methods 
must be compared through careful benchmarking. As a 
final remark, we note that an excellent set of benchmark 
tests for space charge has been developed by Giuliano 
Franchetti, and can be found on-line [5]. These provide a 
thorough set of tests for space charge models, including 
some that involve long time scales. 
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