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Abstract
We sketch how Hamiltonian mechanics can be formu-

lated in Lie algebraic terms (indeed Poisson and Jacobi al-
most invented Lie algebras without knowing it), and how
this formulation can be applied to the description and com-
putation of particle orbits in accelerators in a way that both
unifies linear and nonlinear theory and leads to explicit re-
sults for realistic machines [1–5].

WHAT IS A LIE ALGEBRA?
In grade school we learned how to add numbers to get

other numbers, and how to multiply numbers to get other
numbers. Mathematicians call an algebra any collection
of entities for which addition-like and multiplication-like
operations are defined.

The concept of numbers and their addition can be ex-
tended to the concept of vectors and vector addition. With
vectors in mind, is it possible to define multiplication for
vectors in such a way that multiplication of any two vec-
tors again yields a vector? There are various possibilities.
We will select one. Suppose, for the moment, we denote
such multiplication by the symbol ◦. Thus, we denote the
product of two vectors u and v by the symbols u ◦ v.

Consider a multiplication rule that has the two properties

v ◦ u = −u ◦ v, (1)

u ◦ (v ◦ w) + v ◦ (w ◦ u) + w ◦ (u ◦ v) = 0. (2)

A multiplication rule with the two properties (1) and (2) is
called a Lie product rule, and a vector space equipped with
a Lie product rule is called a Lie algebra. We remark, for
reasons which will become evident, that the condition (2)
is called the Jacobi condition or identity.

IS THERE A LIE ALGEBRAIC
STRUCTURE IN HAMILTONIAN

MECHANICS?

Notation
Consider a 2n-dimensional phase space with position

coordinates q1 · · · qn and momentum coordinates p1 · · · pn.
Also, for convenience, introduce the notation

z = (q1 · · · qn; p1 · · · pn). (3)

That is, z denotes a collection of 2n variables with the first
n of them being the q’s and the remaining n being the p’s.

∗Work supported in part by the University of Maryland and the U.S.
Department of Energy Grant DE-FG02-96ER4DOE.

The Set of Phase-Space Functions Forms a Vector
Space

Next let f(z, t) be any function of z and possibly the
time t. Evidently, since phase-space functions can be added
together and the result is again a phase-space function, the
set of all phase-space functions forms a vector space.

The Poisson Bracket Provides a Lie Product
Is there a way of “multiplying” phase-space functions

that will satisfy the Lie product requirements (1) and (2)?
There is. The Poisson bracket, denoted by the symbols
[f, g], of any two phase-space functions f and g is defined
by the rule

[f, g] =

n∑
k=1

(∂f/∂qk)(∂g/∂pk)− (∂f/∂pk)(∂g/∂qk).

(4)
Then, it is obvious from its definition that the Poisson
bracket has the property

[g, f ] = −[f, g]. (5)

What is not so obvious, and was observed by Jacobi, is that
the Poisson bracket also has the property

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0. (6)

Evidently (5) and (6) are analogs of the properties (1) and
(2). Only the symbols for a product have been changed,
with ◦ replaced by [, ]. We conclude that the set of all
phase-space functions with the Lie multiplication rule (4)
constitutes a Lie algebra.

The Fundamental Poisson Brackets
Simple calculation shows that for the phase-space coor-

dinates themselves there are the Poisson bracket results

[za, zb] = Jab, a, b = 1 · · · 2n (7)

where J is the 2n× 2n matrix, called the Poisson matrix,

J =

(
0 I
−I 0

)
. (8)

Here 0 and I denote the n× n zero and identity matrices.

A RELATED LIE ALGEBRA IN
HAMILTONIAN MECHANICS

Lie Operators
Given any phase-space function f(z, t) there is a related

differential operator, called a Lie operator and denoted by
the symbols : f :, defined by the rule

: f :=

n∑
k=1

(∂f/∂qk)(∂/∂pk)− (∂f/∂pk)(∂/∂qk). (9)
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Evidently, the action of : f : on any function g(z, t) is given
by the relation

: f : g =
n∑

k=1

(∂f/∂qk)(∂g/∂pk)− (∂f/∂pk)(∂g/∂qk)

= [f, g]. (10)

We may view a Lie operator as a Poisson bracket waiting
to happen.

Lie Operators Form a Lie Algebra
Since differential operators can be added and the result

is again a differential operator, Lie operators form a vector
space. Can the set of Lie operators also be given a Lie
product rule? Let {: f :, : g :} denote the commutator of
the Lie operators : f : and : g :,

{: f :, : g :} =: f :: g : − : f :: g : . (11)

It is easily verified that the commutator satisfies require-
ments analogous to the Lie product requirements (1) and
(2). Therefore one suspects that Lie operators might also
form a Lie algebra with the Lie product symbol ◦ replaced
by the symbols {, }. But is the commutator of two Lie op-
erators again a Lie operator? It is. It can be shown from the
Jacobi identity (6) that there is the beautiful relation

{: f :, : g :} =: [f, g] : . (12)

Powers of Lie Operators
Based on the definition of a Lie operator, we can also

define powers : f :ℓ of Lie operators by the rules

: f :0 g = g, (13)

: f :1 g =: f : g = [f, g], (14)

: f :2 g = [f, [f, g]], etc. (15)

Lie Transformations
With powers of Lie operators defined, we can also de-

fine power series. A particularly important power series,
called a Lie transformation, is that based on the Taylor co-
efficients of the exponential function and given by the rule

exp(: f :) =

∞∑
ℓ=0

: f :ℓ /ℓ!. (16)

When applied to any function g, it follows that there is the
result

exp(: f :)g =

∞∑
ℓ=0

: f :ℓ g/ℓ!

= g + [f, g] + [f, [f, g]]/2! + · · · . (17)

INTEGRATING HAMILTON’S
EQUATIONS OF MOTION AND

SYMPLECTIC MAPS
Transfer Maps Arising from Hamiltonians

Suppose H(z, t) is some Hamiltonian. Following
Hamilton, it produces the set of first-order equations

q̇j = ∂H/∂pj , (18)

ṗj = −∂H/∂qj , (19)

which can be written more compactly in the form

ża = − : H : za. (20)

Let zin denote a set of initial conditions at the initial time
tin, and suppose the equations of motion (20) are integrated
to a final time tfin to find final conditions zfin. We may
view the relation between zfin and zin as a map M, often
called a transfer map, that sends phase space into itself, and
write

zfin = Mzin. (21)

Effect of Small Changes in the Initial Conditions
Suppose we make small changes dzin in the initial con-

ditions. According to calculus, doing so will produce small
changes dzfin given by the relation

dzfin =M(zin)dzin (22)

where M(zin) is the Jacobian matrix defined by

M(zin)ab = ∂zfina /∂zinb . (23)

The Symplectic Condition
If M arises from integrating Hamilton’s equations of

motion (20) for some Hamiltonian, as we have assumed,
then it can be shown that M(zin) must satisfy the (nonlin-
ear) condition

MT (zin)JM(zin) = J (24)

for all zin whereMT denotes the transpose ofM . Matrices
M that satisfy (24) are called symplectic matrices, and cor-
respondingly maps M whose Jacobian matrices M(zin)
satisfy (24) for all zin are called sympletic maps.

We have learned that integrating Hamilton’s equations
of motion produces symplectic maps. Conversely, it can
be shown that every symplectic map arises from integrat-
ing Hamilton’s equations of motion for some Hamilto-
nian. Thus, finding symplectic maps and solving Hamil-
ton’s equations of motion are equivalent tasks.

Taylor Representation of Transfer Map
Suppose some design orbit has been found, and now let

the quantities za be deviation variables about the design
orbit. In terms of these variables, M sends the origin into
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itself. Moreover, suppose the Hamiltonian is analytic in z
so as to have a convergent Taylor expansion of the form

H(z, t) =

∞∑
m=2

Hm(z, t) (25)

where each Hm(z, t) is a homogeneous polynomial (in the
components of z) of degree m. Then the final and initial
conditions will be related by Taylor expansions of the form

zfina =
∑
b

Rabz
in
b +

∑
bc

Tabcz
in
b z

in
c

+
∑
bcd

Uabcdz
in
b z

in
c z

in
d + · · · . (26)

We note that the Taylor coefficients Rab, Tabc, Uabcd,
etc., occurring in (26) are not all independent, but rather are
interrelated by the symplectic condition (24). The matrix
R must be symplectic, and the entries in R, T , U , etc. are
interrelated in a complicated way.

IS THE LIE ALGEBRAIC STRUCTURE OF
HAMILTONIAN MECHANICS OF ANY

USE?
Lie Representation of Transfer Map

Suppose M is a symplectic map that sends the origin
into itself. It can be shown that any such map has the fac-
torization

M = R exp(: f3 :) exp(: f4 :) exp(: f5 :) · · · (27)

where R is a linear symplectic map whose action is de-
scribed by the symplectic matrix R and the fm are ho-
mogeneous polynomials of degree m in the phase-space
variables zin. Moreover, unlike the Taylor representation
(26), the homogeneous polynomials fm are all indepen-
dent. Any choice for the fm produces a symplectic map,
and every (origin preserving) symplectic map has a unique
factorization of the form (27). Thus, in the case of accel-
erator physics, the effect of any beam-line element or col-
lection of such elements, including the one-turn map for a
circular machine, is characterized by a symplectic matrix
R and a collection of polynomials fm; and the symplec-
tic condition is automatically built into the description. In
particular, it can be shown that R describes linear behav-
ior about the design orbit, f3 describes second-order (such
as might be caused by sextupoles) and yet higher-order ef-
fects, f4 describes third-order (such as might be caused by
octupoles) and yet higher-order effects, etc.

We also remark, in passing, that R can be written in
terms of Lie transformations. In general there are two
unique quadratic polynomials called f c2 and fa2 (where
the superscripts c and a characterize the matrices associ-
ated with the polynomials as commuting or anti-commuting
with J) such that there is the relation

R = exp(: f c2 :) exp(: fa2 :). (28)

In some important cases a single f2 suffices, and its coeffi-
cients are related to phase advances and Twiss parameters.

Finally, in the case that M does not send the origin into
itself, there is a first-degree polynomial f1 such that M has
the unique factorization

M = exp(: f1 :)R exp(: f3 :) exp(: f4 :) · · · . (29)

It can be verified that the Lie transformation exp(: f1 :)
produces translations in phase space, and describes the er-
ror effects of beam-line element misplacement or misalign-
ment or (in the case of dipoles) mis-powering.

Lie Formulas for Multiplying/Concatenating
Symplectic Maps

Given any two Lie transformations there are Lie alge-
braic rules for combining them. In particular there is a rule
for manipulating exponents, called the Baker-Campbell-
Hausdorff (BCH) theorem/series, that along with (12)
leads to the result

exp(: f :) exp(: g :) = exp(: h :) (30)

with

h = f + g + (1/2)[f, g]

+ (1/12){[f, [f, g]] + [g, [g, f ]]}+ · · · . (31)

In the context of accelerator physics, suppose the trans-
fer map for each beam-line element is known in the stan-
dard forms (27) or (29). Then the BCH theorem can be
used to manipulate the various exponents appearing in the
individual maps to again rewrite the product of the maps in
standard form. That is, there are procedures for finding the
net map for a full beam line, or any portion thereof, given
the maps for the individual elements. In the case of case of
a circular machine, one can combine all the maps for the in-
dividual beam-line elements together to find a full one-turn
map, or even a several-turn map. Finally, the BCH theorem
also provides a procedure for inverting symplectic maps.

Normal Form for a Symplectic Map
Suppose M is the one-turn map for a circular machine,

and the machine tunes are not resonant. Then there is sym-
plectic map A, called the transforming or normalizing map,
such that the map N given by

N = AMA−1 (32)

has a particularly simple form, called a normal form. The
normal-form process is the nonlinear analog of the concept
of matrix diagonalization.

It can shown that N contains all information about tunes,
anharmonicities, and chromaticities to any desired order;
and A contains all information about linear and nonlinear
lattice functions. The map A can also be used to construct
nonlinear generalizations of the Courant-Snyder invariants,
to analyze tracking data for the presence of KAM tori, and
to generate matched beams including nonlinear effects.
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Computing Symplectic Maps M
Given a Hamiltonian H , it can be shown that M obeys

the equation of motion

Ṁ = M : −H : . (33)

Suppose H expanded in the form (25). How does one find
the corresponding map M in the form (27)? We will first
describe how R can be found, and then describe how the
fm can be found. Actually, it is computationally simpler to
write M in the reverse factorized form

M = · · · exp(: g5 :) exp(: g4 :) exp(: g3 :)R, (34)

and then find the gm. Once they are known the fm can
be found from the gm by using concatenation formulas to
bring (34) to the standard forward factorized form (27).

Finding R Since H2(z, t) is quadratic in the variables
z, it can be written in the form

H2(z, t) = (1/2)
∑
ab

Sab(t)zazb (35)

where S(t) is a symmetric matrix. It can be shown that R
is the solution to the matrix differential equation

Ṙ(t) = JS(t)R(t) (36)

with the initial condition

R(tin) = I. (37)

If S is time independent, (36) with the initial condition (37)
can be integrated immediately to give the result

R(t) = exp[(t− tin)JS]. (38)

If S is time dependent, as will be the case if one wishes
to include fringe-field effects (recall that here t plays the
role of s, distance along the design orbit), then (36) must
be integrated numerically.

Finding the gm In general to find the gm one must first
transform theHm(z, t), withm ≥ 3, to the interaction pic-
ture specified by H2(z, t) in a manner analogous to simi-
lar calculations in Quantum Mechanics. Define interaction
picture Hamiltonian pieces Hint

m (z, t) by the rule

Hint
m (z, t) = Hm(Rz, t) with m ≥ 3. (39)

Then it can be shown that the gm with m ≥ 3 obey equa-
tions of motion of the form

ġ3 = −Hint
3 , (40)

ġ4 = −Hint
4 + (: g3 : /2)(−Hint

3 ), etc. (41)

with the initial conditions

gm(z, tin) = 0. (42)

Presently explicit differential equations of this kind for the
gm have been worked out through m = 8.

In the approximation that Hm(z, t) is t independent
within each beam-line element, which amounts among
other things to the neglect of fringe-field effects, there are
a variety of ways for obtaining the gm either analytically
or numerically. If Hm(z, t) is t dependent, as will be the
case if fringe-field effects are to be taken into account, then
the equations of the form (40), (41), etc. must be integrated
numerically with the initial conditions (42).

Computing M for Realistic Beam-Line Ele-
ments: Use of Surface Methods

In this final subsection we will describe how to compute
accurate transfer maps for realistic beam-line elements in-
cluding all fringe-field and multipole effects. For simplic-
ity we will limit our discussion to magnetic beam-line ele-
ments. Analogous treatments can be applied to the cases of
electrostatic and RF electromagnetic fields.

In the previous subsection it was assumed that the
Hm(z, t) are given, which is equivalent, in the case of
accelerator physics and the treatment of magnetic beam-
line elements, to the assumption that the vector potential
A for the the magnetic field B is known in analytic form
so that a Taylor expansion can be performed to find the
Hm(z, t). That is, high-order spatial derivatives of A are
needed about the design orbit.

However suppose, as is often the case, that only B is
known, and moreover it is only known at a 3-D collec-
tion of grid points. For example, when iron is present,
B can only be found numerically at a collection of grid
points with the aid of some three-dimensional electromag-
netic solver. What can be done then to find A and its high-
order derivatives?

At first thought one might contemplate using numeri-
cal differentiation of grid-point data to determine A and
its spatial derivatives. But it is well known to numerical
analysts that numerical differentiation of grid-point data is
intolerably sensitive to numerical noise in the data. Each
differentiation operation amplifies noise. And it is high-
order derivatives that are needed to compute M to high
order.

This problem can be overcome, at least to reasonably
high order, by the use of surface methods. By a theorem
of Neumann the values of B, and accordingly the associ-
ated values of A, can be found within any volume V if the
normal component of B is known on any surface S that
bounds V . Moreover, it can be shown that the process of
determining interior fields from fields on a surrounding sur-
face is smoothing. That is, the interior field values are rela-
tively insensitive to noise in the surface data. Finally, it can
be shown that this smoothing overcomes the amplification
of numerical noise associated with differentiation.

Straight beam-Line Elements There are two cases to
be considered: straight (or essentially straight) beam-line
elements, and curved beam-line elements with significant
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sagitta. In the case of straight beam-line elements it is pos-
sible to surround the design orbit by an imaginary cylinder.
This cylinder can be conveniently assumed to have a circu-
lar, elliptical, or rectangular cross section. Circular cylin-
ders are natural for the case of quadrupoles, sextuples, oc-
tupoles, etc. Cylinders with elliptical or rectangular cross
sections may be more appropriate for elements for which
the bore width is larger than the gap height. See Figure 1
for the case of a wiggler.

Figure 1: An elliptical cylinder, centered on the z-axis, fit-
ting within the bore of a wiggler, and extending beyond the
fringe-field regions at the ends of the wiggler.

For these cylindrical volumes V and their associated sur-
faces S it is possible to solve Laplace’s equation by sepa-
ration of variables. From these solutions it is possible to
generate explicit formulas that determine A and its spa-
tial derivatives at any interior point in terms of values of
the normal component of B at selected grid points on S,
and consequently the Hm(z, t) can be found. The required
surface values can be determined by extrapolation of the 3-
D grid-point numerical values of B onto the selected grid
points on S. Finally, the equations (36), (40), (41), · · · can
be integrated to yield M.

Curved beam-Line elements For curved beam-line
elements with significant sagitta it is impossible to fit a
straight cylinder within the bore of the element. In this case
it is necessary to employ volumes V , and their associated
surfaces S, that have a more complicated geometry. Figure
2 shows a convenient surface for the case of dipoles with
significant sagitta, the surface of a bent box with straight
end legs.

Unfortunately, for curved beam-line elements there are
no geometries for which the Laplace equation is separable
and therefore, while the results of Neumann still hold, there
is no way to exploit them by explicit formulas. However,
according to a theorem of Helmholtz, interior fields can also
be computed from surface data providing both the normal
component of B and the scalar potential ψ associated with
B are known on the surface. Moreover, in this case the
interior vector potential and its spatial derivatives can be
found by multiplying the surface data by known geometry-
independent kernels and then integrating the results over S.

Figure 2: A bent box, fitting within a dipole, and having
straight end legs that extend beyond the fringe-field regions
at the entry and exit of the dipole.

Finally, this process is also smoothing: the interior values
of A and its spatial derivatives so obtained are also rela-
tively insensitive to noise in the surface data.

In practice, the procedure is as follows: First set up cuba-
ture points (specially selected grid points) on S, interpolate
the numerical 3-D grid data for B onto the surface cuba-
ture points, and compute the normal component of B at
these cubature points. In addition interpolate 3-D grid data
for ψ, which can also be provided by 3-D electromagnetic
solvers, onto the surface cubature points. Next multiply the
surface data by the known kernels and integrate the results
over the surface using cubature formulas. The result will
be the interior vector potential and its spatial derivatives,
and consequently the Hm(z, t) can be found. Finally, the
equations (36), (40), (41), · · · can be integrated to yield M.

CONCLUSION
For both straight and curved beam-line elements, the use

of Lie and surface methods makes it possible to compute,
for the first time, accurate high-order transfer maps for real-
istic elements including all fringe-field and multipole error
effects.
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