Free Electron Laser Seeding experiments at SPARC

Luca Giannessi ENEA C.R. Frascati

On behalf of the SPARC collaboration

2011

RF Gun & Solenoid

Linac modules & Solenoid

- UCLA/BNL/SLAC design 1.6 cells RF injector
- Three TW S-band modules
- Energy in the range 100MeV to 180 MeV
- Focusing solenoids on the first two modules (longitudinal compression via velocity bunching)

Undulator sequence

<u>SP</u>ARC

Undulator termination with phase shifter

- 6 undulator sections (ACCEL Gmbh)
- 77 periods each
- Period 2.8cm / K max ~2.3
- Phase shifters between the modules

In Vacuum Spectrometer

L. Poletto & F. Frassetto Un. Padova

> Entrance/exit arms: $\approx 1 \text{ m}$ Three gratings: 600 gr/mm, 214 - 560 nm - 0.034 nm/pixel 1200 gr/mm, 120 - 250 nm - 0.017 nm/pixel 2400 gr/mm, 36 - 150 nm - 0.0084 nm/pixel CCD detector (Roper Scientific) Pixel size 20 mm - 1340 × 1340 pixel

In Vacuum Spectrometer

SASE Spectra @ 500 nm Orbit kicks to selectively inhibit SASE in the first undulators

2UM

5UM

4UM

3UM

6UM

SASE experiments in 2010 ...

***SASE**

* PRST-AB, submitted
 ** PRL, to be published
 *** work in progress

Seeded Operation (2010)

Seed modes:

Low intensity seeding (HHG): 266 nm & 160 nm generated in gas (Ar)

 High pulse intensity seeding (saturation & superradiance): 400 nm in BBO crystal

Seeding with harmonics generated in gas

to Undulators

Seeded Operation (2010)

Seed modes:

Low intensity seeding (HHG): 266 nm & 160 nm generated in gas (Ar)

 High pulse intensity seeding (saturation & superradiance): 400 nm in BBO crystal

GAS Cell

Infrared

Ministero dell'Università e della Ricerca

Seeding with harmonics generated in gas

Focusing mirrors

Differential vacuum

Seeded Operation (2010)

Seed modes:

 Low intensity seeding (HHG): 266 nm & 160 nm generated in gas (Ar)

FEL Amplifier

λ

Beam parameters			
Energy	177.2 MeV		
Peak Current	45 A		
Rel. En. Spread (slice)	< 2 x 10-4		
Projected Emitt.	2 mm-mrad		

Wavelength 266 nm (3° harmonic of Ti:Sa in Ar, E_{seed} ~50 nJ (±20nJ) – Amplified > 1 uJ)

Wavelength 160nm (5° harmonic of Ti:Sa in Ar, $E_{seed} \le 1nJ - Amplified \sim 4 nJ$)

Seeded Operation (2010)

Seed modes:

Low intensity seeding (HHG): 266 nm & 160 nm generated in gas (Ar)

FEL Amplifier

λ

Spectrometer slit @ 5 um & nbw filter @ 266nm, 17% T - Energy > 1 uJ – Sidebands (saturation)

Beam parameters				
Energy	177.2 MeV			
Peak Current	45 A			
Rel. En. Spread (slice)	< 2 x 10-4			
Projected Emitt.	2 mm-mrad			

FEL cascade seeded by HHG

FEL cascade seeded by HHG

High intensity seeding: Superradiance & harmonic generation

- *Emission from a "coherent" electronic state* Dicke, PR 93, 99 (1954)
- In FELs, regime of "field/particles" evolution with
 - Power scaling typical of superradiance a la "Dicke" $P \alpha n_e^2$
 - Peak power exceeding the saturation threshold
 - Longitudinal self-focusing
 - Solitary wave-like pulse propagation
 - High Harmonics Generation

References

R. Bonifacio, B. W. J. Mc Neil, P. Pierini, PRA 40, 4467 (1989)
R. Bonifacio, L. De Salvo Souza, P. Pierini, N. Piovella, NIM A296, 358 (1990)
L. Giannessi, P. Musumeci, S. Spampinati, J. of Appl. Phys. 98, 043110 2005
T. Watanabe et al. Phys. Rev. Lett. 98, 034802 (2007)

Seeded Amplifier at saturation

(Simulation with Perseo - www.perseo.enea.it)

Brookhaven - SDL 2006

Longitudinal focusing

FIG. 3 (color). Each FROG result is a row in the figure labeled by the FWHM of the main temporal peak. Starting from the left, the four columns are: raw and retrieved FROG images, temporal and spectral distributions including phase. Amplitudes (red) are normalized and phase (blue) are plotted from -6 to +6 radians.

PRL 98, 034802 (2007)

PHYSICAL REVIEW LETTERS

week ending 19 JANUARY 2007

Experimental Characterization of Superradiance in a Single-Pass High-Gain Laser-Seeded Free-Electron Laser Amplifier

T. Watanabe,^{1,*} X. J. Wang,¹ J. B. Murphy,¹ J. Rose,¹ Y. Shen,¹ T. Tsang,² L. Giannessi,³ P. Musumeci,⁴ and S. Reiche⁵ ¹National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973-5000, USA ²Instrumentation Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA ³ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati, Italy

⁴INFN c/o Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Aldo Moro 2, 00185 Roma, Italy ⁵Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA (Received 15 September 2006; published 19 January 2007)

and spectrum

shape

Pulse

Pulse energy scaling

FIG. 4 (color). Measured FROG results of the first row of Fig. 3 (blue) and GENESIS1.3 simulation results (red). For the temporal distribution, toward the right is the head and left is the tail of the pulses.

Solitary wave-like superradiant pulse

Bunching coefficients in the front side of the pulse: Harmonics

- Bunching peaks at the higher order harmonics
- Short bursts of harmonic radiation in the front side of the pulse
- Bunching structure preserved by the "solitary wave" behavior of this solution

Expected very efficient generation of high order harmonics

Direct seeding @400 nm - (30/6/2010) Seed @ 400 nm, <0.5 uJ – 9 uJ - 6 UM tuned at 400 nm

FEL Amplifier

Seed Energy < 0.5 uJ

λ

Beam parameters			
Energy	178 MeV		
Peak Current	50 A		
Rel. En. Spread (slice)	< 2 x 10-4		
Projected Emitt.	2.5/2.9 mm-mrad		

Seed

Direct seeding @400 nm - (30/6/2010) Seed @ 400 nm, <0.5 uJ - 9 uJ - 6 UM tuned at 400 nm

FEL Amplifier

Beam p	arameters	
	178 MeV	
rrent	50 A	

Seed Energy < 0.5 uJ

λ

~ 0.7 uJ

Beam parameters			
Energy	178 MeV		
Peak Current	50 A		
Rel. En. Spread (slice)	< 2 x 10-4		
Projected Emitt.	2.5/2.9 mm-mrac		

Seed

Direct seeding @400 nm - (30/6/2010) Seed @ 400 nm, <0.5 uJ - 9 uJ - 6 UM tuned at 400 nm

λ

Seed Energy < 0.5 uJ

~ 0.7 uJ

~ 3 uJ

Seed

Direct seeding @400 nm - (30/6/2010) Seed @ 400 nm, <0.5 uJ – 9 uJ - 6 UM tuned at 400 nm

Direct seeding @400 nm - (30/6/2010) Seed @ 400 nm, <0.5 uJ – 9 uJ - 6 UM tuned at 400 nm

High harmonics down to 37 nm (E=178MeV)

4h

Observation of 11° harmonic at 37nm

5h

6h

7h

11h 10h 9h 8h

Measured energy per pulse, spot size & and bandwidth of the first 11° harmonics

3h

2h

1h

Conclusions

First FEL cascade seeded with harmonics generated in gas

- Future development: energy boost to 240 MeV → seeding with higher order and even harmonics with two colors hhg in Ar.
- Harmonic generation in superradiance \rightarrow generation of high harmonics in a FEL amplifier
 - Developments: Multistage cascaded FEL & Harmonic cascade

Observed pulse energies vs. wavelength (~ 50-60A / 178MeV)

Mode of operation	SASE	Seeded		
Wavelength	500 nm	200nm	133 nm	66nm*
Energy/pulse (~ 100 fs)	~100 µJ	~10 µJ	~1 µJ	~100 nJ
# photons	2.5 x 10 ¹⁴	1 x 10 ¹³	6 x 10 ¹¹	3 x 10 ¹⁰

* FEL cascade operating in superradiance