# Design and Testing of Advanced Photonic Band-gap (PBG) Accelerator Structures

B. J. Munroe, M. A. Shapiro, R. J. Temkin, MIT PSFC R. A. Marsh, LLNL

V. Dolgashev, S. G. Tantawi, A. D. Yeremian, SLAC

THOBN5





## **Outline**

- Introduction
- □ Testing at 11 GHz
  - Elliptical-rod Design at 11 GHz
  - SLAC Experimental Setup
  - Preliminary Results
- □ Testing at 17 GHz
  - MIT Test Stand
  - 17 GHz Photonic Band-gap Structure
- Conclusions





## Frequency Selective PBG Lattice

□ Wave propagation is disallowed at certain frequency ranges [Photonic

**Band-gap** (**PBG**)] in a periodic lattice.

1D lattice:





metal rods

2D lattice:





Smirnova et al., J. Appl. Phys., 2002





### **Microwave PBG Accelerators**

- ☐ Previous experimental results validate concept
- □ Demonstrated acceleration at 17 GHz at MIT (Smirnova 2005)
  - 35 MV/m achieved
- ☐ High-power testing at SLAC at 11 GHz (Marsh 2009)
  - 100 MV/m achieved
  - Showed influence of high H fields on breakdown
    - can these be reduced?







## **Outline**

- Introduction
- □ Testing at 11 GHz
  - Elliptical-rod Design at 11 GHz
  - SLAC Experimental Setup
  - Preliminary Results
- □ Testing at 17 GHz
  - MIT Test Stand
  - 17 GHz Photonic Band-gap Structure
- Conclusions





# Elliptical-rod Design at 11 GHz

- □ Standing wave design with 2 matching cells, one test cell
- $\square$  Axially powered via  $TM_{01}$  mode launcher

#### **Mode Launcher**

X-band In

TM<sub>01</sub> Out

#### **Structure**







# Elliptical-rod Design at 11 GHz

□ Standing wave design with 2 matching cells, one test cell

 $\square$  Axially powered via  $TM_{01}$  mode launcher

□ Structure has elliptical inner rods

Spread large H field over larger region

→ reduce pulsed heating

| Performance at 100 MV/m             |          |            |  |
|-------------------------------------|----------|------------|--|
|                                     | Round    | Elliptical |  |
| Power                               | 5.9 MW   | 4.4 MW     |  |
| Peak Surface E<br>Field             | 208 MV/m | 207 MV/m   |  |
| Peak Surface<br>Magnetic Field      | 890 kA/m | 713 kA/m   |  |
| Pulsed Heating for 150ns Flat Pulse | 131 K    | 84 K       |  |







# **Experimental Setup at SLAC**

| Diagnostic       | Uses                                                                      |                           |
|------------------|---------------------------------------------------------------------------|---------------------------|
| Forward<br>Power | <ul> <li>Feedback power level</li> <li>Find gradient, ΔT, etc.</li> </ul> | Faraday Structure Faraday |
| Reverse<br>Power | •Feedback frequency •Check analysis results                               | Cup Launcher Cup  Forward |
| Faraday Cups     | •Trigger breakdown counter, data recording                                | Power                     |
|                  |                                                                           | Reverse Power             |

From Klystron





# **Experimental Setup at SLAC**

□ Both structures tested at SLAC Test Stand 04:







## Sample PPM Traces (Elliptical-rod Structure)







### Preliminary Elliptical-rod Gradient and Pulse Length

 $\square$  Structure not fully processed, expect  $\ge 100$  hrs more proc.







### Preliminary Elliptical-rod Breakdown Probability

- Breakdown probability may change with more processing
- □ Preliminary result gives breakdown probability of ~3·10<sup>-5</sup>/pulse/meter at 70 MV/m and 50K pulsed heating
- Same iris geometry as green structure at right







## **Outline**

- Introduction
- □ Testing at 11 GHz
  - Elliptical-rod Design at 11 GHz
  - SLAC Experimental Setup
  - Preliminary Results
- □ Testing at 17 GHz
  - MIT Test Stand
  - 17 GHz Photonic Band-gap Structure
- Conclusions





## 17 GHz Test Stand

- □ Powered by HRC 17 GHz Haimson Research Klystron
  - 4.2 dB hybrid coupler; up to 4 MW of power @ 1.0 μs available
- □ Test stand will be completed in Spring, 2011
  - 17 GHz TM<sub>01</sub> mode launchers built by SLAC
- □ Planned experiments on MIT Photonic Band-gap structures
  - Microwave breakdown with improved diagnostics
  - Metallic Photonic Band-gap Structures
  - Dielectric Photonic Band-gap Structures



HRC Hybrid



SLAC 17 GHz Launcher





## 17 GHz Structure

- Round-rod design based on standing structures tested at SLAC
- □ Structure has open outer wall
  - Must be contained in external vacuum chamber
- ☐ Higher heating due to increase in surface resistivity with freq.

| Performance at 100 MV/m              | 17 GHz   |
|--------------------------------------|----------|
| Power                                | 2.4 MW   |
| Peak Surface Electric Field          | 200 MV/m |
| Peak Surface Magnetic Field          | 900 kA/m |
| Pulsed heating for 150 ns flat pulse | 163 K    |
| a/b                                  | 0.18     |







### **Conclusions**

- □ Elliptical-rod photonic band-gap structure under test at SLAC
  - Pulsed heating reduced by almost 40%
  - Structure processing still in progress
  - Very few breakdowns up to 70 MV/m
    - Expect at least 100 MV/m gradient before testing complete
- □ MIT standing wave test stand
  - Construction in progress
  - Will be operational spring 2011
  - Studies of microwave breakdowns with improved diagnostics
  - Metallic and dielectric (see A. Cook's paper in proceedings) photonic band-gap structures to be tested
  - Users welcome!





# Collaborators/Acknowledgements

### **MIT**

A. Cook

I. Mastovsky

E. Nanni

M. Shapiro

P. Thomas

#### **SLAC**

V. Dolgashev

J. Lewandowski

L. Laurent

S. Tantawi

D. Yeremian

#### **HRC**

J. Haimson

LANL

E. Smirnova

LLNL

R. Marsh





This research is funded by the

US Department of Energy,

Office of High Energy Physics



