
ACCELERATING BEAM DYNAMICS SIMULATIONS WITH GPUs∗

I.V. Pogorelov† , K. Amyx, P. Messmer, Tech-X Corporation, Boulder, CO 80303, USA

Abstract

We present recent results of prototyping general-purpose
particle tracking on GPUs and discuss our CUDA im-
plementation of transfer maps for single-particle dynam-
ics and collective effects. The objective of this work
being incorporation of the GPU-accelerated tracking into
ANL’s accelerator code ELEGANT [1], we used the code’s
quadrupole and drift-with-LSC elements as test cases,
achieving 80x and 36x speedups over CPU implementa-
tions, respectively. We discuss quadrupole kernel opti-
mizations, as well as data-parallel and hardware-assisted
approaches to avoiding thread contention at the charge de-
position stage of algorithms for modeling collective effects.

GENERAL PURPOSE COMPUTING ON
GPUS

In recent years, general purpose computing on graphics
processing units (GPUs) has attracted significant interest
from the scientific computing community because these
devices offer a large amount of computing power at very
low cost. Unlike general purpose processors, which are
designed to address a variety of tasks ranging from con-
trol flow and bit manipulation operations to floating-point
operations, GPUs are optimized to perform floating-point
operations on large data sets. Instead of allocating a large
amount of the on-chip real estate for large cache memory
and control flow logic, GPUs dedicate a lot of resources
to floating-point units. A GPU like the one found in the
NVIDIA Tesla C2050 series consists of 15 vector proces-
sors with a vector length of 32 elements. Using predicated
execution enables each vector element to execute its own
flow through the program, providing the impression of 448
independent execution units.

The introduction of the Compute Unified Device Archi-
tecture (CUDA) by NVIDIA has made it possible for com-
putational scientists without a deep knowledge of graphics-
oriented programming interfaces like OpenGL to take ad-
vantage of the high processing power offered by GPUs.

CUDA enables users to develop algorithms in C++ with
a small set of language extensions. The developers write
so-called kernels, code that executes on the GPU defin-
ing the behavior of a single thread of execution. Typically,
a kernel is executed by thousands of threads concurrently
and the GPU’s thread manager maps them to the physical
thread processors. The kernel is invoked on the host side,
at which time it is determined how many threads will be

∗Work supported by the DOE/BES Grant No. DE-SC0004585 and by
Tech-X Corp.

† ilya@txcorp.com

executed. Memory management, data transfer and kernel
invocations are all controlled by the host CPU. A special
compiler, nvcc, translates kernels and host programs into
code that executes on the CPU and on the GPU. This archi-
tecture simplifies significantly the software development
process for CUDA-enabled GPUs, but it still requires a de-
tailed knowledge of the GPU’s architecture in order to ob-
tain good performance. For example, while the threads can
be treated independently of each other, they are in fact ex-
ecuted on a Single-Instruction-Multiple-Data (SIMD) type
architecture. Thus, on a C2050 card, 32 threads are ex-
ecuted using the same instruction stream, which means
that diverging threads can lead to a large amount of stalled
threads and result in performance degradation. Also, one
of the benefits of GPUs is their large memory bandwidth,
but in order to take advantage of it, memory access of dif-
ferent threads has to be carefully aligned. Finally, many
inherently sequential algorithms, such as cumulative sums
of a vector, are straightforward to implement on a serial
processor. In contrast, optimization on a massively parallel
system like GPUs requires carefully crafted routines.

GOALS OF THE CURRENT WORK

Our primary goal is to provide a set of fast particle
tracking kernels for ELEGANT. ELEGANT is an open-
source, multi-platform code used for design, simulation,
and optimization of FEL driver linacs, ERLs, and storage
rings [1, 2]. The parallel version, PELEGANT [3], uses
MPI for parallelization and shares all source code with the
serial version.

Several new ”direct” methods of simultaneously opti-
mizing the dynamic and momentum aperture of storage
ring lattices have recently been developed at Argonne [4].
These powerful new methods typically require various
forms of tracking the distribution for over a thousand turns,
and so can benefit significantly from faster tracking capa-
bilities. Because the ability to create fully scripted simula-
tions is essential in this approach, ELEGANT is used for
these optimization computations.

ELEGANT is fundamentally a lumped-element parti-
cle accelerator tracking code utilizing 6D phase space,
and is written entirely in C. A variety of numerical tech-
niques are used for particle propagation, including trans-
port matrices (up to third order), symplectic integration,
and adaptive numerical integration. Collective effects are
also available, including CSR, wakefields, and resonant
impedances [1, 2]. Recently, we prototyped key ELE-
GANT particle tracking algorithms on NVIDIA GPUs and
demonstrated that such accelerated implementations can
be incorporated into ELEGANT. To achieve this goal, we

WEP164 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1800C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques



focused on one element described by a transfer map (a
quadrupole), and one collective-effect element (a drift with
1D longitudinal space charge). Our longer-term goal is to
expand the kernel library to include optimized implementa-
tion on GPUs of most of the ELEGANT elements, starting
with the most time consuming ELEGANT kernels.

INITIAL RESULTS

Prototype Kernels for Single-Particle-Dynamics
in ELEGANT

As a first step toward enabling particle tracking with EL-
EGANT on GPUs, we implemented in CUDA the 2nd or-
der map for the quadrupole beamline element (QUAD in
ELEGANT notation). We implemented algorithms in both
single and double precision, with an emphasis on optimiz-
ing the kernels for the NVIDIA “Fermi” GPU architec-
ture. In our implementation, we stored particles in linear
memory, and investigated schemes in which one particle is
computed per thread. We utilize the high-bandwidth and
low-latency constant memory cache to access the map pa-
rameters used to update the particle information: constant
memory gives register-time access for cache hits when all
threads of a warp access the same value, as happens in
a quadrupole map computation. Alternatively, on Fermi-
capable devices the LDU (LoaD Uniform) instruction may
be employed to accelerate reads from global memory that
do not depend on thread index. In our highest-performing
prototype kernels (see below), we observed a performance
degradation of roughly 12 percent when employing the
LDU instruction instead of explicitly utilizing constant
memory.

For such a kernel with a high density of floating point
computations, it is extremely important to ensure that all
per-thread data is stored not as local memory (on the L1
cache of a GPU multiprocessor) or shared memory but in
registers. By default, a small per-thread array is mapped
to cached memory when the compiler cannot determine all
array indexing. There are two options to force the kernels
to use registers: either by manually unrolling all loops and
using scalar variables (for a second-order quadrupole map,
this corresponds to 6 scalars and 258 computations), or by
proper loop ordering with the #pragma unroll compiler
directive. Inspection of the PTX assembly code verifies the
type of memory used for each thread: kernels that use local
memory instead of registers will employ the ld.local and
st.local mnemonics.

For testing purposes, we generated a realistic 6D phase
space distribution function that was propagated through a
lattice consisting of a small number (∼ 20) of quadrupoles
and drifts (without space charge). In a simulation with
20 million double-precision particles with kernels that uti-
lize constant memory to access map elements and regis-
ters for per-thread data, we observed a 80x speedup on a
C2070 Fermi GPU compared to a single core Intel Xeon
X5650 @ 2.67GHz CPU, with a comparable speedup seen

when traversing a single quadrupole. This corresponds to
200 GFLOPS, out of a peak theoretical throughput of 500
GFLOPS for a Tesla C2070. Kernels utilizing local mem-
ory and shared memory achieved 90 and 115 GFLOPS, re-
spectively.

In addition to developing kernels for other beamline el-
ements, we plan to explore additional efficient ways of ac-
cessing the map parameters. The latter becomes more im-
portant in simulations with higher order maps, as the num-
ber of Taylor series coefficients that describe the map goes
up.

Prototype Kernels for Collective Effects in ELE-
GANT

Investigation into kernels for collective effects elements
in ELEGANT focused on the LSCDRIFT (drift with lon-
gitudinal space charge). The core computation steps of the
LSCDRIFT are as follows:

1. The particle temporal coordinates must be calculated
from the particle spatial coordinates and momenta

2. The maximum and minimum temporal values must be
found

3. A histogram is generated from all particles’ temporal
coordinates

4. The maximum of the binned charge is computed
5. An FFT is performed on the binned charge
6. The RMS of the particle coordinates is computed
7. Low- and High-pass filters are applied to a rescaled-

FFT of current, which is then multiplied by impedance
8. An inverse FFT is performed to compute the voltage

kick
9. The voltage kick is interpolated to each particle

10. All particle coordinates are updated based on the in-
terpolated voltage kick

The most difficult component of LSCDRIFT to port to a
GPU is the charge binning (step 3), in which a histogram
with 200-500 bins is computed based on a large number of
particles. This is challenging to implement on a GPU due
to contention between individual threads attempting to up-
date the same location in memory simultaneously. We have
investigated multiple approaches to avoiding such race con-
ditions.

The data-parallel approach to implementing the charge
binning utilizes the Thrust template library’s thrust::sort
function to sort an array of particle bin indices. A call
to the thrust::lower bounds function is applied to calcu-
late the number of particles per charge bin i by subtracting
lower bounds[i] from lower bounds[i+1]. The maximum
of the binned charge histogram is then computed with a
secondary kernel that computes the maximum via a reduc-
tion in shared memory of a single block. This solution
achieves an acceleration 5.3x for 20 million particles and
256 charge bins.

A second approach involves utilizing the Fermi architec-
tures ability to perform thread-safe atomic memory updates

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEP164

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 1801 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



in the L1 cache of each multiprocessor. Calling atomi-
cAdd() to a global array for every particle results in ter-
rible performance (ten times slower than a CPU implemen-
tation); however, atomic updates to per-thread-block copies
of bin arrays are quite fast because the per-bin arrays can
be kept on the L1 cache of each multiprocessor. This ker-
nel then utilizes the threadfence() instruction to enforce
a degree of block-ordering to combine the results of all
blocks and perform a reduction in shared memory to cal-
culate the maximum binned value. This approach achieves
an acceleration of 8.7x.

The data-parallel approach relies on a global NlogN
sort, and the cached atomic update approach relies on the
hardware to resolve concurrent memory accesses. As an
alternative approach, we attempted to take advantage of
the hierarchical memory architecture of the GPU by com-
puting sub-histograms in shared memory. This is done by
performing a per-block bitonic sort in shared memory, and
then performing a per-block segmented prefix sum. The
sort and scan operations allow a thread-safe stream com-
paction in shared memory to calculate a per-block sub-
histogram without relying on either hardware methods or
global sort operations. As in the cached atomic kernel, a

threadfence() reduction is used to combine the results of
all blocks and calculate the maximum binned value. Our
implementation for this kernel achieved a modest 3.2x ac-
celeration. We attribute this to low occupancy as a result
of significant shared memory usage, as well as the inherent
cost of the sorting and scanning algorithms.

High-performance kernels were implemented for the re-
maining operations in the LSCDRIFT computation. The
RMS calculation kernel was redesigned to maximize use of
shared memory reductions. In some cases, separate opera-
tions were combined into a single kernel to reduce memory
traffic on the device. This was done for the following cases:

1. The time coordinates computation kernel (step 1) was
augmented to also perform shared memory reductions
to calculate the minimum and maximum values per
block. A second kernel performs the reduction of
these per-block max and min values.

2. As mentioned, the maximum binned value is com-
puted inside the cached atomic histogram kernel via
a threadfence() reduction.

3. The voltage kick interpolation and final particle up-
date kernels were combined

The entirety of the GPU-accelerated LSCDRIFT algo-
rithm achieves a 36x speedup relative to a CPU implemen-
tation in double precision for 20 million particles and 256
charge bins.

The LSCDRIFT computation on the CPU spent 13% of
the total time computing time coordinates and min/max;
6% on binning time coordinates and max; 9% on calculat-
ing RMS measures of the distribution; 1% on forward FFT,
voltage calculation, and inverse FFT; and 71% of total time
on applying voltage kicks to particles. The breakdown was

very different for the GPU-accelerated LSCDRIFT: 11%
of total time compute time coordinates and min/max; 32%
binning time coordinates and max; 7% calculating RMS
measures of the distribution; 2% on forward FFT, voltage
calculation, and inverse FFT; and 48% on applying voltage
kicks to particles.

For a Tesla C2070 compared to Xeon 5650, accelera-
tions for these computations was 42x for computing time
coordinates and min/max; 8x for binning time coordinates
and max; 45x for calculation of RMS measures of the dis-
tribution; < 1x for forward FFT, voltage calculation, and
inverse FFT; and 51x for applying voltage kicks to parti-
cles.

ONGOING DEVELOPMENT

Future development will focus adding full parallel
multiple-GPU support to ELEGANT, supporting arbitrary
number of particles in a simulation (rather than being lim-
ited by GPU memory), supporting GPU-acceleration for
additional types of both collective and single-particle ele-
ments, and offering transparent and backwards-compatible
support for GPU acceleration without requiring users to
modify their simulations.

We will also further optimize existing implementations.
Examples of such optimizations include: taking advan-
tage of higher-order quadrupole map symmetries to reduce
memory accesses and maximize cache use, allowing a ker-
nel to perform multiple elements’ map computations in a
single call to minimize memory traffic, and redesigning the
CPU-to-GPU particle data structure conversion to utilize
GPU-accelerated matrix transposes to minimize CPU-to-
GPU transfer time.

ACKNOWLEDGEMENTS

This work is funded by the DOE/BES Grant No. DE-
SC0004585 and Tech-X Corp. Michael Borland and Yu-
song Wang have offered us valuable advice on various as-
pects of ELEGANT.

REFERENCES

[1] M. Borland, ”elegant: A Flexible SDDS-compliant Code for
Accelerator Simulation”, APS LS-287, September 2000.

[2] M. Borland, V. Sajaev, H. Shang, R. Soliday, Y. Wang, A.
Xiao, W. Guo, “Recent Progress and Plans for the Code
ELEGANT,” in Proceedings of 2009 International Compu-
tational Accelerator Physics conference, San Francisco, CA,
WE3IOpk02 (2009).

[3] Y. Wang, M. Borland. “Implementation and Performance of
Parallelized Elegant”, in Proceedings of PAC07, THPAN095
(2007).

[4] M. Borland, V. Sajaev, L. Emery, and A. Xiao, “Direct
Methods of Optimization of Storage Ring Dynamic and Mo-
mentum Aperture”, in Proceedings of PAC09, TH6PFP062
(2009).

WEP164 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

1802C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques


