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Abstract

We implement a single level version of the fast multipole
method in the software package COSY Infinity. This algo-
rithm has been used in other physics fields to determine
high accuracy electrostatic potentials, and is implemented
here for charged particle beams. The method scales like
NlogN with the particle number and has a priori error esti-
mates, which can be reduced to essentially machine preci-
sion if multipole expansions of high enough order are em-
ployed, resulting in a highly accurate algorithm for simula-
tion of intense beams without averaging such as encoun-
tered in PIC methods. In order to further speed up the
algorithm we use COSY Infinity’s innate differential al-
gebraic methods to help with the expansions inherent in
this system. Differential Algebras allow for fast and exact
numerical differentiations of functions that carries through
any mathematical transformations performed, and can be
used to quickly create the expansions used in the fast mul-
tipole method. This can then be combined with moment
method techniques to extract transfer maps which include
space charge within distributions that are difficult to ap-
proximate.

INTRODUCTION

When examining the dynamics of intense beams the ef-
fects of space charge cannot be ignored, and a number of
methods exist for determining how space charge can affect
various quantities of interest in a charged particle beam.
We use the computer code COSY Infinity 9.0 to perform
our simulations, and have developed our own method to
add the effects of space charge. COSY Infinity is a map
based code that uses differential algebras to determine ex-
act numerical derivatives which are used to create transfer
maps to arbitrary order [1]. These differential algebraic
vectors act as objects which carry through algebraic op-
erations, thus it is possible to construct a transfer map by
simply integrating the path of the reference particle with
the differential algebraic vectors representing offsets from
the position of the reference particle.

We have developed a method to add the effects of space
charge to a transfer map using these differential algebras as
well as the statistical moments of the test particles to cre-
ate a Taylor series of the distribution, and compose each
coefficient with pre-calculated potential integrals [2]. This
method allows us to determine the transfer map of a beam
element with space charge in a self consistent manner, as
well as advance the particles through the machine using the
map. Under certain circumstances not all of the particles
can be accurately transferred using this moment method. If

the beam is extremely flat, its distribution is not easily de-
termined using a Taylor series; or it has a wide, diffuse halo
there will be divergence issues. In fig 1 we see an example
where a distribution with diffuse edges runs into difficulty
using the moment method. In order to still advance the
particles and generate the map accurately we have imple-
mented a version of the fast multipole method.

Figure 1: This is a phase space plot of the kicks given to
a Gaussian distribution. The blue points indicate the par-
ticles as calculated with the fast multipole method, while
the purple particles are the same ones advanced using the
moment method.

In the first section we will be looking at the way a fast
multipole method is normally applied. In the second sec-
tion we look at the changes that we have made to the algo-
rithm. Finally, in the third section we look at how the new
method performs.

FMM BASICS

The fast multipole method is a fast way to get accurate
electrostatic fields for a large number of particles without
averaging the charges or the fields [3]. The method works
by first separating the particles into boxes on a grid. The
boxes then have their multipole expansions calculated,

φ(z) = Qlog(z) +

∞∑

k=1

ak
zk

, (1)

where,

Q =

m∑

i=1

qi and ak =

m∑

i=1

−qiz
k
i

k
, (2)

with z = x + iy, and qi,zi is the charge and complex po-
sition of each test particle. The expansion is truncated at
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order m. Then, for each box a local expansion is calcu-
lated from the sum of the multipole expansions of the boxes
that do not have direct contact with the box in question, see
Fig. 2,

φ(z) =
∞∑

�=0

b�z
�. (3)

Figure 2: The region containing the particles is subdivided
into boxes. In this instance it is a two dimensional region
divided into sixteen boxes. The orange box denotes the re-
gion containing the particles in question, the green boxes
are the nearest neighbors, and the blue boxes are the dis-
tant boxes. The distant boxes all contribute their multipole
expansions to the local expansion in the orange box.

Finally, for each particle in the box the potential is calcu-
lated as the sum of the potential from the local expansion,
and the particle to particle interactions of the box they are
contained in, and the boxes touching it, see Figure 3.

Figure 3: This is a closeup of the box in question and its
nearest neighbors. The potential is determined by the lo-
cal expansion and, as is shown here, the point to point
coulomb interactions of the particles in the box and their
nearest neighbors.

THE NEW METHOD

In the two dimensional algorithm, as currently practiced,
the local expansion as seen in (3) is calculated from the
multipole expansion coefficients in (2) using the relations,

b0 = a0log(−z0) +
∞∑

k=1

ak

zk0
(−1)k, (4)

whereas for � ≥ 1,

b� = − a0

�z�0
+

1

z�0

∞∑

k=1

ak

zk0

(
�+ k − 1

k − 1

)
(−1)k. (5)

This is a time consuming method that requires first creat-
ing a multipole expansion and then creating a local expan-
sion. The method we have developed skips this step. When
creating the multipole expansions, we use differential alge-
bras while finding the potential at the center of each box
with the multipole expansion.

φ(z + dz) = Q log(z + dz) +

∞∑

k=1

ak
(z + dz)k

, (6)

where dz is the differential algebraic vector (dx + idy).
COSY Infinity can then insert the positions of the points
within the box into dz and thus directly extract the poten-
tial from the multipole expansion. Furthermore, using the
original method, two separate sums needed to be calculated
to find the electric fields of each particle, while with the
differential algebraic method this is done directly on the
differential algebraic vector.

As can be seen in fig 4, for the regions we are interested
in there is significant time savings with the differential al-
gebraic methods we have developed.

THE METHOD IN PRACTICE

The FMM was benchmarked against a series of both an-
alytical results, and other codes and shown to be accurate.
In fig 5 we see that the accuracy becomes saturated at and
above fifth order.

The timing of the code has been measured using quanti-
ties such as number of particles, multipole order and num-
ber of boxes. As can be seen in fig 6, the time required to
advance the particles scales between N , N2, and N logN .
The experiment shown in Fig. 6 uses a fixed order and box
number with a varying number of particles. The results
show that for a small number of particles the timing scales
with N2; this occurs when the number of particles in a
given box are small, and it becomes more time consum-
ing to make a local expansion than to simply expand each
particle. At a certain point, in this case 20000 particles,
the expansion is no longer more trouble than it’s worth and
the rate of growth slows down, until as the number rises it
becomes N logN , asymptotically.
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Figure 4: This graph shows a comparison of the amount
of time needed to determine the potential of a distribution
of 20000 particles. The surface shows the time taken using
the differential algebraic method, while the points represent
the time taken by the method in the section entitled FMM
Basics. As can be seen, the DA method is faster through
tenth order.
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Figure 5: This is a plot of the accuracy of the fast multi-
pole method with different numbers of boxes, and different
expansion orders the order value becomes saturated at fifth
order.

The DA methods involved are capable, within the larger
COSY framework, of applying the fields of the given ele-
ments to particles with different masses or energies. This
also carries through to the effects of space charge using
the FMM. Using this method we are able to simulate a
heavy particle beam with multiple isotopes moving through
a mass spectrometer, see Fig. 7.
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Figure 6: This log-log plot shows in green the measured
time of a fixed order, fixed box number distribution as the
number of particles are increased. The orange line repre-
sents N2, while the red line represents N , with the blue
line representing N logN .
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Figure 7: This shows the different angles given to a col-
lection of carbon atoms in the two most common isotopes
ionized to one charge.

CONCLUSIONS

We have demonstrated that not only is the fast multi-
pole method useful for determining the effects of space
charge, but that it can also be used to help determine the
map of a given element with space charge included, even
when the distribution function is not easily estimated with
polynomials. Furthermore, our use of differential alge-
bras in the calculation of local expansions gives us a faster
method for finding the required expansions in the regions
of box number and series order in which we are interested.
We have confirmed that the timing of the fast multipole
method scales as N logN just as was predicted, and that
the method can be adapted to mixed isotope beams.
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